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Abstract

The paper provides several original conditions involving ranks and traces
of functions of a pair of orthogonal projectors (i.e., Hermitian idempotent
matrices) under which the functions themselves are orthogonal projectors.
The results are established by means of a joint decomposition of the two
projectors.
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Appendix

In what follows we provide the representations of the Moore–Penrose inverses
of selected functions of orthogonal projectors P and Q having the forms (??) and
(??), respectively.

(PQ)† = U

(

PA 0

B∗A† 0

)

U∗
,

(P+Q)† = U

(

Ir −
1

2
P

A
−BD†

−D†B∗ 2D†
−PD

)

U∗
,

(P−Q)† = U

(

P
A

−BD†

−D†B∗
−PD

)

U∗
,

(PQP)† = U

(

A† 0

0 0

)

U∗
,

(In −PQ)† = U

(

A −B

0 In−r

)

U∗
,

(PQ +QP)† = U

(

1

2
A†

−

1

2
A†B(B∗A†B)†B∗A† A†B(B∗A†B)†

(B∗A†B)†B∗A†
−2(B∗A†B)†

)

U∗
,

(PQ −QP)† = U

(

0 −(B∗)†

B† 0

)

U∗
,

(In −P−Q)† = U

(

−PA −A†B

−B∗A† P
D

)

U∗
,

(P+Q−PQ)† = U

(

Ir 0

−D†B∗ D†

)

U∗
.

Validity of these representations can be verified by exploiting the four Penrose
conditions given in (??). Details on how most of these representations were
derived can be found in articles [3, 4] and [6, 7].
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