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Abstract

We study different types of asymptotic behaviour in the set of (infinite di-
mensional) nonhomogeneous chains of stochastic operators acting on L1(µ)
spaces. In order to examine its structure we consider different norm and
strong operator topologies. To describe the nature of the set of nonhomoge-
neous chains of Markov operators with a particular limit behaviour we use
the category theorem of Baire. We show that the geometric structure of
the set of those stochastic operators which have asymptotically stationary
density differs depending on the considered topologies.
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