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Abstract

Many important models in quantitative finance are based on the assump-
tion that stock returns are independent and normally distributed. However,
the empirical distributions of price changes are frequently skewed and lep-
tokurtic. Therefore, flexible distributions and their potential in financial
modeling constitute an important research topic in mathematical finance.
We explore the potential of Gaussian mixtures as an alternative to the nor-
mal distribution. Our discussion is based on three practical examples taken
from the Mexican stock market. This article is not limited to the estima-
tion of marginal distributions. Contrasting with some other papers in the
literature, the application of multivariate Gaussian mixtures to estimate
joint distributions of financial returns is also analyzed. This multivariate
approach gives us the opportunity to illustrate the application of Gaussian
mixtures in portfolio theory and risk assessment.
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1. Introduction

The normality of stock returns is a fundamental assumption in mathematical
finance. However, empirical evidence often contradicts this theoretical founda-
tion. As a consequence, the application of alternative models is an important
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research topic in Risk Theory (Jondeau [9], Klugman et al. [11]). This article
presents empirical evidence suggesting that Gaussian mixtures (GM) constitute
an effective tool for financial modeling. We can describe its content as a practical
discussion based on three examples from the Mexican Stock Market1. Previous
articles have also discussed the potential of GM in portfolio selection and risk
assessment. However, most of these approaches concentrate on the estimation of
marginal distributions and ignore the covariance structure among assets. Thus,
the main contribution of our proposal is the application of the same ideas, but
from a multivariate perspective. In other words, we take stochastic dependence
into account, and we recognize its importance as a real source of volatility and
risk. The results are encouraging and invite us to reconsider the Normal distri-
bution as a valid foundation in Risk Theory and Financial Modeling. In order
to make the practical potential of mixture models more evident, we illustrate
the estimation of joint distributions of financial returns, and exploit the resulting
models to minimize the maximum expected loss of a portfolio, where VaR and
CVaR are easily calculated thanks to the properties of GM.

The application of copula functions is a standard in financial practice; there-
fore, we use it here as a benchmark to assess the performance of our multivariate
GM approach. We conclude that GM offer a powerful family of flexible distri-
butions that deserve to be studied from a new perspective in Risk Management
and Quantitative Finance.

2. The normal distribution in finance

Stock prices are frequently assumed to follow a geometric Brownian motion pro-
cess; therefore, financial returns are considered to be independent and normally
distributed. In their seminal article, Black and Scholes [2] assume that “. . . the
stock price follows a random walk in continuous time . . .Thus the distribution of

possible stock prices at the end of any finite interval is log-normal.” The normal-
ity of returns is a fundamental hypothesis in financial mathematics. However,
stock returns often show skewed and leptokurtic empirical distributions that con-
tradict this distributional assumption. The non Gaussianity of price movements
is a well known fact since the 1960’s; nevertheless, it still motivates an interesting
discussion in Quantitative Finance (for instance: Mota [18] and Esch [4]). In
1965 Fama [5] explains how the normal distribution hypothesis was not seriously
questioned until the work of Benoit Mandelbrot [12]. According to Fama [5],
Mandelbrot’s main assertion is that academic research had “readily neglected the

implications of leptokurtosis usually observed in empirical distributions of price

changes”.

1
Bolsa Mexicana de Valores
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An increasing interest for Gaussian mixtures and its possible applications
in finance has been shown in the literature during the last two decades. Zhang
and Cheng [21] propose an original criterion to calculate the VaR based on the
assumption of Gaussian mixture returns. In the Markowitz mean-variance portfo-
lio framework, the normality assumption of asset returns is necessary to “easily”
solve the optimization problem. In [3], Buckley et al. optimized —by chang-
ing the objective function and the constraints of the Quadratic Programming
problem— the portfolio to find the weights of each asset when they follow a Gaus-
sian Mixture distribution. Buckley et al. [3] write: “the new approach is ideal for

an industrial setting, providing considerable additional flexibility over and above a

standard Markowitz approach, with only a modest increase in complexity”. Buck-
ley et al. also discuss three limitations of the multivariate normal assumption for
joint asset returns: skewness, leptokurtosis and asymmetric correlation. Esch [4]
presents a discussion about the application of flexible non Gaussian distributions
in finance. He criticises the summary rejection of the normal distribution and
recommends Gaussian mixtures as an alternative to model the returns of assets.
In a more recent article, Tan and Chu [20] explore the application of Gaussian
mixture models in portfolio selection and some of its theoretical implications in
the calculation of the VaR.

Recently, several articles have reported empirical evidence supporting the
application of Gaussian mixtures in Quantitative Finance. Behr and Poetter [1]
analyze the marginal distribution of the returns of ten European stock market
indexes. They compare different flexible models and they conclude that Gaussian
mixtures seem to be slightly superior than the others. In a similar way, Kamaruz-
zaman et al. [10] apply GM models to estimate the distribution of the returns of
three stock market indexes in Malaysia. This paper presents empirical evidence
supporting the application of Gaussian mixtures in financial modeling. It is based
on three series from the Mexican Stock Market. The results are interesting and
suggest that GM are of great practical value.

3. Finite Gaussian mixtures

Let X : Ω → R be a continuous random variable and let f be its corresponding
density function. We say that X is distributed according to a Gaussian Mixture
when

(1) f(x) =
k
∑

j=1

πj
1

σj
φ
(x− µj

σj

)

.

In the previous equation, φ represents the density of a standard normal and
π1, π2, . . . , πk are positive constants such that

∑k
j=1 πj = 1. Then, it is possible
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to assume that our sample space Ω is such that Ω =
⋃k

j=1Ωj and ΩiΩj = ∅
∀ i 6= j. Where each πj in equation (1) represents the prior probability for Ωj

and each 1
σj
φ
(

x−µ2

σ2

)

is the conditional probability density of X given Ωj. Each Ωj

represents a specific regime of financial returns. Given x, a particular realization
of X, the posterior probabilities for each regime Ωj are given by

(2) Pr[Ωj |X = x] =

πj

σj
φ
(x−µj

σj

)

∑k
h=1

πh

σh
φ
(

x−µh

σh

)
; j = 1, 2, . . . , k.

GM models are flexible. Gridgeman [7] proofs that “a mixture of different normal

distributions with a common mean is leptokurtic”. An original proof of this pro-
posal is presented in the appendix at the end of this article. Given their capacity
to model leptokurtic densities, GM models constitute a natural alternative to
model the distribution of financial returns. Figure 1 illustrates the flexibility of
GM models. It compares a standard Normal density to three different versions
of the following GM:

(3) f(x) = π
1

σ0
φ
( x

σ0

)

+ (1− π)
1

σ1
φ
( x

σ1

)

.

The first element of the three GM models shown in Figure 1 is a normal density
with σ0 = 0.5. Model 1 has a weight parameter π = 0.75, and its second element
is a Normal density with standard deviation σ1 = 1.17. The second element of
Model 2 is a normal density with σ1 = 1.50 and its weight parameter is π = 0.50.
Finally, the parameter values for Model 3 are: σ1 = 10.5 and π = 0.05. All GM
in Figure 1 are centered at the the origin and have unit variance; however, all
have different levels of kurotosis.

GM models inherit many convenient properties from their normal compo-
nents (Tan and Chu [20]). This makes them attractive and comfortable to work
with. Mixtures of normals may be defined in terms of two, three or even or
more parameters. Thus, according to what we need, these models may be flex-
ible or parsimonious. Depending on the value of its parameters, a mixture of
k ≥ 2 normal densities may be unimodal, symmetric, skewed, multimodal, etc.
(See McLachlan and Peel [17] and Fruhwirth-Schnatter [6]). Given their great
flexibility, GM constitute a powerful tool in financial modeling.

GM are not limited to a univariate context. A random vector X : Ω → R
p is

distributed according to a Multivariate Gaussian Mixture if its density function
is a convex linear combination of multivariate normal densities. This is:

(4) f(x) =

k
∑

j=1

πjφ
(

x|µj ,Σj

)

.
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Figure 1. Three leptokurtic Gaussian mixtures and a standard normal.

where

(5) φ(x|µj ,Σj) =
1

(2π)
p

2 |Σj|
1

2

exp
[

−
1

2
(x− µj)

tΣ−1
j ((x− µj))

]

is the density function of a multivariate normal centered at µj and with covariance
matrix Σj (see Mardia et al. [13], p. 59).

4. Maximum likelihood estimation

Let x1, x2, . . . , xn be an observed random sample coming from a univariate GM
like the one in equation (1) and let

θ =
(

π1, π2, . . . , πk, µ1, µ2, . . . , µk, σ
2
1 , σ

2
2 , . . . , σ

2
k

)t

be its vector of parameters. Then, its corresponding log-likelihood function is:

(6) L(θ) =
n
∑

i=1

ln

(

k
∑

j=1

πj

σj
φ
(x− µj

σj

)

)

.

In order to estimate θ, L must be maximized subject to
∑k

j=1 πj = 1. After
applying Lagrange multipliers, this problem translates into the following system
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of equations:

(7)































1
n

∑n
i=1 Pr[Ωj |X = xi] = πj, for j = 1 . . . k

∑n
i=1 Pr[Ωj |X = xi]

∂
∂µj

ln
(

1
σj
φ
(

xi−µj

σj

))

= 0, for j = 1 . . . k

∑n
i=1 Pr[Ωj|X = xi]

∂
∂σ2

j

ln
(

1
σj
φ
(

xi−µj

σj

))

= 0, for j = 1 . . . k.

The posteriors in equation (7) are defined as in equation (2). Therefore, the
maximum likelihood estimate of each πj results to be the arithmetic mean of the
posteriors for its corresponding Ωj and for each observation xi in the sample.
The left hand side of the last 2k equations in (7), can be interpreted as the first
derivatives of a weighted log-likelihood : the larger the value of Pr[Ωj|X = xi], the
larger the contribution of xi to the estimation of µj and σ2

j . After some algebraic
work, the last 2k equations in (7) can be transformed into

(8)







µ̂j =
∑n

i=1 Wi,jxi, for j = 1 . . . k,

σ̂2
j =

∑n
i=1 Wi,j(xi − µ̂j)

2, for j = 1 . . . k,

where Wi,j =
Pr[Ωj |X=xi]∑n

h=1
Pr[Ωj |X=xh]

.

The Maximum Likelihood estimate of θ can be obtained by the following
iterative process known as the EM Algorithm:

EM-Algorithm:

1. Define initial values for the 3k − 1 parameters in the mixture.

2. Calculate Pr[Ωj |X = xi] for i = 1, 2, . . . , n and for j = 1, 2, . . . , k according
to equation (2).

3. Expectation Step: Compute the priors π1, π2, . . . , πk according to equa-
tion (7).

4. Maximization Step: Estimate values for µ̂1, µ̂2, . . . , µ̂k and for σ̂2
1 , σ̂

2
2 , . . . ,

σ̂2
k according to equation (8).

5. Repeat the cycle from step 2 until convergence is reached.

The EM-Algorithm is illustrated by the flow chart shown in Figure 2. It
is reliable and easy to implement. An interesting discussion about its theoreti-
cal foundation is given in McLachlan and Peel [17] and McLachlan et al. [15].
Its practical application is illustrated by the examples shown in the following
sections.
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Figure 2. EM algorithm for a univariate Gaussian mixture.

5. Univariate modeling for marginal returns

Example 1. Mexican Stock Market Index; MEXBOL IPC.

We analyze one thousand daily log-returns of the Mexican stock index (Bolsa
IPC) from June 30th 2008 to June 18th 2012. The sample series and its corres-
ponding histogram are shown in Figure 3. Our objective is to estimate its distri-
bution function. In a first step, we use maximum likelihood to fit a single normal
model and we asses its goodness of fit with a Kolmogorov-Smirnov test. The re-
sults are shown in Table 1. Figure 4 compares the resulting normal distribution
with its empirical counterpart; clearly, the normal model has an important lack
of fit.

µ σ K-S

0.00026 0.015 0.09 pv ≤ 0.01

Table 1. IPC daily log returns; normal distribution fit.

The series of daily returns of the IPC index at the left hand side of Figure
3 shows sudden contractions and expansions of volatility, this volatility clusters
are a common feature in random sequences generated by certain forms of GM.
The histogram at the rigth hand side has a peaked shape that also suggests the
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Figure 3. Bolsa IPC Index daily log-returns.

Figure 4. Bolsa IPC Index daily log-Returns; normal distribution fit.

possibility of a mixture of normals. Thus, we decided to fit the following model:

f(x) = π
1

σ1
φ
(x− µ1

σ1

)

+ (1− π)
1

σ2
φ
(x− µ2

σ2

)

.

Maximum Likelihood was applied. Table 2 shows the point estimates for each
parameter in the mixture. It is interesting to see how the first element of the mix-
ture (regime Ω1) has a negative expected return and a relatively large volatility.
This distribution describes the behavior of daily returns in periods of financial
stress. According to the model, this difficult regime was observed 25% of the
time.
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The Kolmogorov-Smirnov test does not show any evidence against this GM
model.

Regime Ω1 Regime Ω2

π µ1 σ1 µ2 σ2 K-S

0.2457 -0.001613 0.02764 0.000872 0.00836 0.02 pv > 0.1

Table 2. IPC daily log returns. Gaussian mixture fit.

Figure 5 compares it with the empirical distribution. Additionally, Figure 6 com-
pares an empirical density estimate based on kernel smoothing with the normal
and the GM densities; the mixture model seems to offer an excellent fit.

Figure 5. Bolsa IPC Index daily log-Returns; Gaussian mixture fit.

Example 2. TELMEX L AND AMX L.

Now we analyze the marginal log-returns of two assets from the Mexican
stock market: TELMEX L and AMX L. We study their behavior from march
4th, 2008 to april 15th, 2010 (a total of 529 observations). The Kolmogorov-
Smirnov test rejected the normal distribution in both cases. The results of this
analysis are shown in Table 3 and Figure 7.

Asset µ σ K-S

TELMEX L -0.00005 0.0259 0.08 pv ≤ 0.01
AMX L 0.00008 0.0196 0.07 pv ≤ 0.01

Table 3. TELMEX L and AMX L daily log returns. Normal distribution fit.
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Figure 6. Bolsa IPC Index daily log-Returns; density estimation.

Figure 7. TELMEX L and AMX L marginal normal distribution fit.

Figures 8 and 9 show a graphical description of both series and suggest the
possibility of a GM process. Thus, the EM-Algorithm was applied to fit the par-
simonious model given in equation (3). The results are shown in Table 4 and
Figure 10. Even though this model is defined in terms of three parameters only;
the improvement with respect to the normal distribution is remarkable. In both
cases the GM completely overlaps with its corresponding empirical distribution.
In the next section, these two marginal densities will be linked through a Gaussian
copula in order to estimate the joint distribution of both daily log-returns.

Asset π σ1 σ2 K-S

TELMEX L 0.29 0.0308 0.0123 0.02 pv > 0.1
AMX L 0.18 0.0491 0.0169 0.02 pv > 0.1

Table 4. TELMEX L and AMX L daily log returns. Gaussian mixture fit.
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Figure 8. TELMEX L and AMX L marginal daily log-returns.

Figure 9. Marginal histograms; (left) TELMEX L, (right) AMX L.

6. Bivariate modeling of joint returns

The previous section shows the potential of Gaussian mixture models to estimate
univariate distribution functions in finance. We now illustrate their application
in a multivariate context. Example 2 in Section 3 analyzes a series of 529 log-
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Figure 10. Marginal distributions; (left) TELMEX L, (right) AMX L.

returns of AMX L and TELMEX L. These securities were analyzed separately and
their stochastic dependence was not taken into account. Now, both returns are
considered to be dependent elements of a bivariate random vector, and maximum
likelihood is applied in order to estimate their joint distribution. We follow two
different approaches: one assumes this density to be a mixture of two bivariate
normals; the other fits a Gaussian copula with Gaussian mixture marginals. The
results are compared in terms of a goodness of fit assessment.

The Gaussian Mixture approach

The scatter plot in the left hand side of Figure 12 shows the observed sample
of a random vector V = (X,Y )t: where X and Y represent the observed daily
log-returns of TELMEX L and AMX L respectively. The shape of the scatter
suggests that the density function of V is unimodal and that X and Y have a
positive correlation.

We assume that V is distributed according to a multivariate Gaussian mix-
ture as defined in equations (4) and (5) of Section 3. In this particular case V

is bidimensional, therefore equation (5) is given in terms of five parameters and
may be written as in equation (9).

(9)

φj(x, y | ρ) =
1

2πσj,xσj,y

√

1− ρ2j

e
−

1

2(1−ρ2
j)

[

(

x−µj,x

σj,x

)

2

−2ρj

(

x−µj,x

σj,x

)(

y−µj,y

σj,y

)

+

(

y−µj,y

σj,y

)

2
]

Each ρj is the conditional correlation between X and Y given regime Ωj. In a
similar way, µj,x, µj,y, σj,x and σj,y are their respective conditional expectations
and standard deviations.

We applied the EM-algorithm to fit a mixture of two bivariate normals, the
results are given in Table 5.
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Regime πj µj,x µj,y σj,x σj,y ρj
Ω1 0.7644 0.0008 0.0004 0.0123 0.0160 0.4159
Ω2 0.2358 0.0030 0.0014 0.0326 0.0449 0.5725

Table 5. TELMEX L and AMX L joint log returns. Gaussian mixture fit.

It is interesting to see how this mixture model describes the joint behavior of
both assets (AMX L and TELMEX L) in terms of two different bivariate normals.
The first component of the mixture (regime Ω1) corresponds to a regular market
behavior with low risk but moderate expected returns; this regime is observed
76% of the time. The second element of the mixture (regime Ω2) describes a
stressed environment with higher volatility and stronger dependence among both
assets. According to the GM model, this stressed regime is observed 24% of the
time. Even though Ω2 implies a higher risk, it also has a larger expected return.
Figure 11 shows the curves of level for this GM model and compares them with
the curves of level of an empirical density function estimated by kernel smoothing.
The GM model offers a good description of the joint behavior of these two assets.

Figure 11. Curves of level: (L) Gaussian mixture, (R) Smooth empirical density.

In a similar way, Figure 12 compares the scatter plot of 529 random points gen-
erated from our GM model to our observed sample of TELMEX L and AMX L;
both scatters are quite similar. We can conclude from this graphical assessment
that the GM model offers a good estimation of the joint distribution of TELMEX
L and AMX L.
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Figure 12. Scatter plots: (L) Observed sample, (R) Gaussian mixture simulation.

The Copula approach

Consider again our 529 random returns X and Y with marginal distributions
FX and FY respectively, and let H : R2 → R be their corresponding cumulative
joint distribution. According to Sklar’s Theorem (see Nelsen [19], Chap. 2), there
exists a copula function C : [0, 1] × [0, 1] → R, such that

H(x, y) = C(F (x), G(y)) ∀(x, y) ∈ R
2.

If F and G are continuous, then C is unique.

The Gaussian Copula model consists on the application of the bivariate nor-
mal as a copula function; this is: C(u, v; ρ) = Φ(Φ−1(u),Φ−1(v)|ρ) where Φ(·, ·|ρ)
represents a bivariate normal cumulative distribution, centered at the origin, with
unite variances and correlation coefficient ρ. If we let u = FX(x) and v = FY (y)
and we assume that the joint distribution FXY of our assets returns is given in
terms of a Gaussian copula, then

(10) Fxy(x, y) = Φ(Φ−1(FX(x)),Φ−1(FY (y))|ρ) ∀(x, y) ∈ R
2.

Its corresponding density is given by:

(11) fXY (x, y; ρ) =
φ(Φ−1(FX(x)),Φ−1(FY (y))|ρ)

φ(Φ−1(FX(x)))φ(Φ−1(FY (y)))
fX(x)fY (y).
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In order to estimate the joint density of TELMEX L and AMX L, we applied a
Gaussian copula with Gaussian mixtures as marginal densities for the observed
sample of bivariate returns shown at the left hand side of Figure 12. The marginal
distributions FX and FY were considered to be the univariate GM models spec-
ified in Table 4. Given the joint density in equation (11), the parameter ρ was
estimated by maximum likelihood:

ρ̂ = 0.4968.

A graphical assessment is shown in Figures 13 and 14. In general, the Gaussian
copula model shows a good fit. Its curves of level are similar to those of the
empirical density (Figure 13), and in a Monte Carlo simulation it is difficult to
differentiate its scatter plot from the scatter of the observed sample (Figure 14).

Figure 13. Curves of level: (L) Gaussian copula, (R) Smooth empirical density.

Comparative assessment of both models

The bivariate GM as well as the Gaussian copula with GM marginals seem to
offer an acceptable fit. The plots shown in Figures 11 and 13 suggest that both
functions are quite similar to the smooth empirical density. However, there are
some clear differences between these two models. Both have elliptic curves of
level in their high density regions near the mode. However, while the GM keeps
this elliptical pattern constant, the curves of level of the Gaussian copula model
gradually evolve into a rather irregular shape as the density decreases, adopting
a form similar to the curves of level of the empirical density. In order to compare
the quality of these two estimations, we decided to define a partition of the R

2

space into nine subsets, and then to apply a Chi-square goodness of fit test.
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This criterion is illustrated in Figure 15. The intervals on the X and Y axis are
marginally equiprobable. The results of the test are given in Table 6. According
to this Chi-Square statistic and to the previous graphical assessment, we can
conclude that both models offer a good fit. Nevertheless, the bivariate GM seems
to fit slightly better.

Figure 14. Scatter plots: (L) Observed sample, (R) Gaussian copula simulation.

Figure 15. Space partition for a Chi-Square goodness of fit assessment.
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Model χ2 Statistic p-value

Bivariate Gaussian Mixture 2.0640 0.9790
Gaussian Copula with Gaussian Mixture Marginals 4.0997 0.8480

Table 6. Bivariate GM and GC with GM marginals. Goodness of fit assessment.

7. Portfolio selection and risk assessment

Consider a random vector Xt = (X1,X2, . . . ,Xn) distributed according to a
mixture of k multivariate Normal densities, and let S = ωtX =

∑p
i=1 ωiXi be

a convex linear combination of the elements of X. Then, S follows a univariate
Gaussian Mixture.

To proof this, we apply the formula of the complete probability to express
FS(s) = Pr[S ≤ s] as follows:

(12) FS(s) =
k
∑

j=1

πj Pr[S ≤ s |Ωj] =
k
∑

j=1

πjΦ

[

s− ωtµj

ωtΣjω

]

,

where µj and Σj represent the mean vector and covariance matrix of the jth

element of the Gaussian Mixture model. The distribution of S expressed in
equation (12) is a convex linear combination of k univariate normal distributions;
therefore, S follows a univariate GM.

If X represents the vector of joint returns of p assets in a portfolio, then FS

is its corresponding distribution function. The Value at Risk (VaR) at level α for
this portfolio is the solution to the following equation in s:

FS(s) = α.

Its corresponding Conditional Value at Risk (CVaR) is E(S |S ≤ s).
We now consider the returns of TELMEX L and AMX L; both analyzed in

the previous section. We create 100 different portfolios with weights ω and 1−ω,
for ω = 0.00, 0.01, 0.02, . . . , 0.99. Figure (16) shows the VaR and CVaR at levels
α = 0.01 and α = 0.05 for these hundred portfolios. Portfolios with optimal
VaR where identified numerically. Their corresponding CVaR was estimated by
Monte Carlo simulation. A numerical summary is shown in Table (7).

α TELMEX L AMX L VaR CVaR Std-E

0.05 0.58 0.42 −1.55% −2.5% 0.00005
0.01 0.59 0.41 −3.09% −3.9% 0.00003

Table 7. VaR and CVaR for TELMEX L and AMX L
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Figure 16. VaR at levels 0.01 and 0.05 for a hundred protfolios: TELMEX L and AMX L

8. Discussion and conclusion

Gaussian mixtures are flexible and easy to implement. To be based on the Nor-
mal distribution makes them an attractive and natural alternative in financial
modeling.

Recent articles show successful applications of GM in different markets from
Europe and Asia. Here, we illustrate their potential with three examples based on
the Mexican market. The empirical evidence suggests that GM offer a powerful
tool in financial modeling.

Gaussian mixtures may be leptokurtic but never heavy tailed. Section 5
shows three univariate examples where the application of GM models results in
an accurate approximation to the actual distribution of three different series of
returns. The goodness of fit assessment in these three examples is based on the
Kolmogorov-Smirnov test. Therefore, it mainly concentrates on the body of the
distribution while fit on the tails is almost ignored. If GM (or any other flexible
model) are applied in practice, the additional application of the Anderson-Darling
test together with the analysis of a qq-plot is strongly recommendable.

Section 6 presents the estimation of the joint density of two assets from the
Mexican market. The analysis fits a bivariate GM and compares it to a Gaussian
copula with GM marginals. The bivariate GM shows a slightly better fit. This is
a direct consequence of a larger number of parameters in the bivariate GM. Both
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models (the mixture and the copula) show a very good fit. Nevertheless, it is our
opinion that the GM model is more interpretable, and gives a better description
of the joint behavior of both assets.

Finally, a simple exercise of portfolio selection and risk assessment based on
a Gaussian Mixture model is presented in Section 7. This practical example il-
lustrates the potential of multivariate GM models in financial practice. It shows
how the GM approach simplifies the calculation of important risk measures such
as VaR and CVaR. This idea was previously presented in Tand and Chu [20],
however, their proposal implicitly assumes that the assets contained in the port-
folio have independent returns. In contrast, our proposal takes into account the
class conditional covariance structure of the multivariate GM model, resulting in
a more realistic distributional assumption.

We have presented clear evidence that Gaussian mixtures constitute a com-
petitive statistical tool with great practical value in financial modeling. They
offer a versatile combination of precision and simplicity that makes them an in-
teresting extension of the normal distribution in Quantitative Finance. In a uni-
variate context, this parametric family shows a natural capacity to fit leptokurtic
distributions. Three univariate examples illustrate how a parsimonious linear
combination of just two normals may be enough to capture the leptokurtosis in-
duced by random changes of volatility. In a bidimensional exercise, a mixture of
two bivariate normals gave us an accurate estimate of the joint distribution of
two assets returns. This bivariate model includes two correlation coefficients in-
teracting on a random exchange of regimes process. Thus, it gives us a clear and
interesting description of the dependence structure of both returns that is not so
easily obtained from the Gaussian copula model. A quality assessment compares
the bivariate GM with a Gaussian copula with GM marginals. Both models show
a similar fit; however, the bivariate GM seems to be slightly more flexible and
easier to interpret. Given their notorious flexibility, GM models constitute an
interesting statistical tool in Quantitative Finance. Their relation to the normal
distribution, invites us to study their implications in modern financial practice.
We think that some fundamental concepts of Portfolio Optimization and Value
at Risk deserve to be deeply studied from the finite mixture models perspective.
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Appendix

Proposal. Let g : R → R be a probability density function with the following
features: g is symmetric, not platikurtic, centered around µ and it has finite
variance σ2. Then, the mixture of g with any normal density centered on the
same µ as g but with different variance is leptokurtic.

Proof. It can be assumed, without loss of generality, that µ = 0 and that g

is mixed with a standard normal density. Thus, consider a random variable X

which is distributed according to

f(x) = πφ(x) + (1− π)g(x).

The forth moment of X is E[X4] = 3α + (1 − α)µ4, where µ4 is the fourth
moment corresponding to g. In a similar way, E[X2] = α + (1 − α)σ2. To prove
this proposal is equivalent to solve the following inequality2:

3π + (1− π)µ4

(π + (1− π)σ2)2
> 3.

The inequality above is true as long as

π

(

1−
1

σ2

)2

+
1

3

µ4

σ4
> 1.

Given that π(1 − 1
σ2 )

2 > 0 and 1
3
µ4

σ4 ≥ 1, we can conclude that the proposal is
true.

Corollary. The mixture of two or more normal densities with different variances,

but with the same expected value µ is always leptokurtic.

Proof. This corollary can be proofed by mathematical induction. Without loss
of generality, it is assumed that µ = 0. We know that normal densities are
not platikurtic; therefore, according our previous proposal, the mixture of two
normals densities is leptokurtic. Lets assume that the corollary is true for a
mixture of k > 2 Gaussian densities, and consider a mixture of k + 1 normals
with coefficients α1, α2, . . . , αk+1. Let π = (

∑k
j=1 αj) and 1− π = αk+1. Thus

(13)
k+1
∑

i=1

αi

σi
φ
(

x |σ2
i

)

=
1− π

σk+1
φ
(

x |σ2
k+1

)

+ π

k
∑

i=1

(

αi
∑k

j=1 αj

)

1

σi
φ
(

x |σ2
i

)

is the mixture of a non-platikurtic density (mixture of its first k elements) with
a normal density ((k + 1)th element of the mixture). Therefore, the corollary is
true.

2
The left hand side is the excess of kurtosis of f .
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