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Abstract

On a base of the location model an idea of a data-dependent choice of
tuning constant (truncation level) for a robust estimator is presented. The
method uses maximum likelihood estimator in a new model with tuning
constant as a nuisance parameter. Some results of computer simulation
study are given.
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1. Introduction

Let us consider the family of normal distributions with unknown expected value
θ and known variance equal to 1. The classic criterion function defining estimator
of θ is the likelihood function. As the solution we obtain the sample mean. It
is well known that the sample mean is the best unbiased estimator of θ under
model assumption. However, it loses its optimal properties in a neighborhood of
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the model. Even one observation can have arbitrarily large influence on both the
expected value and the variance of the sample mean. To avoid such undesirable
property, Huber, 1981, has proposed to replace the quadratic function appearing
in the likelihood function by the following function

(1) φt(x) =

{

1
2x

2, |x| ≤ t,

t|x| − 1
2t

2, |x| > t,

where t is a positive number. The choice of the tuning constant t has an influence
on properties of Huber’s estimator. Under model assumption, if the constant t is
sufficiently large, then Huber’s estimator is comparable with the sample mean,
which has the smallest variance among unbiased estimators. For t sufficiently
small, Huber’s estimator is comparable with the sample median, which is an
unbiased estimator but has larger variance. The situation is changing, when data
are contaminated. If the level of contamination increases, then the bias and the
variance increase much faster for large value of t than for small. The choice of the
constant t can be interpreted as our belief in the deviation from the assumptions.
So the value t reflects the level of possibility of having observations, which are
outside the model. Our proposition is to include t as a nuisance parameter in new
proposed model, which takes into account derogation from the normal model. So
if data come from the normal model, then the estimator of t should take values
sufficiently large and should choose t sufficiently small depending on the level of
contamination. In other words ‘optimal’ choice of value t is directly connected
with unknown level of contamination of the normal model.

The tunning constant for the Huber’s function has appeared in several papers.
In most cases t = 1.345 has been taken (for example Alamgir et al. [1]). The value
of the tunning constant has also been mentioned by Venables and Ripley [4] as the
constant for which about 95% efficiency at the normal is obtained. Another values
of tunning constant have also been used. Cantoni and Ronchetti [2] present an
example of computing robust estimates of parameters using the tuning constant
t = 1.2. The mentioned values of the tuning constant were chosen be researchers.
An idea of the data-dependent tuning constant has already appeared in literature.
In the linear regression model You-Gan Wang et al. [5] have proposed a method
of obtaining the tunning constant so that the asymptotic efficiency is maximized.
We propose another method of obtaining data-dependent tuning constant t. We
are concentrated on a simpler model, namely the location normal model with
known variance, to verify effectiveness of the proposed method.

This paper consists of five sections. In Section 2 basic information concern-
ing Huber’s estimator have been presented. In Section 3 our method of data-
dependent choice of tuning constant is described. The section presents also the
theorem concerning asymptotic normality of the estimator that has been obtained
in this section. In Section 4 there can be found computer simulation results for
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data from new model described in Section 3. Section 5 presents computer sim-
ulation results for estimation of location parameter in normal model for both
model and contaminated data. The results concern seven estimators of location
parameter (maximum likelihood estimator, four Huber’s estimators, median and
the estimator from Section 3) and the estimator for tuning constant (described
in Section 3).

2. Huber’s estimator

Let ϕ(·) denote the density function of the standard normal distribution that is

ϕ(x) =
1√
2π

exp

(

−1

2
x2

)

.

We consider the normal model with shift parameter θ described by

N = {ϕ(x − θ) : θ ∈ R}.

Using the concept of maximum likelihood estimation (m.l.e.), the estimator of θ
is defined by

θ̂n = argmaxθ∈R

n
∑

i=1

−1

2
(Xi − θ)2

for independent random variables X1, . . . ,Xn having distribution N(θ, 1). Huber
[3] has proposed a method of estimation, which in the spirit of m.l.e. can be
defined as

(2) θ̂n,t = argmaxθ∈R

n
∑

i=1

−φt(Xi − θ),

where φt is the function given by (1).

Huber’s estimator (2) is Fisher consistent and Fréchet differentiable. Cases
t = 0 and t = +∞ correspond to the median and the maximum likelihood
estimator, respectively. The asymptotic distribution of

√
n(θ̂n,t − θ) is normal

(see Huber [3]) with expectation zero (at the model) and the variance equal to

∫

IF2
t (x|θ) dFθ(x),

where IFt(·|θ) : R → R stands for the influence function of the form

IFt(x|θ) =
φ′t(x− θ)

∫

φ′′t (x− θ)φ(x− θ) dx
.
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3. A method of data-dependent choice of tuning constant

In this section some theory of estimating location parameter θ in normal model
using a data-dependent tuning constant t for Huber’s estimator will be presented.
An idea of this method of estimation is to treat the vector (θ, t)T as a vector of
parameter in a new model defined by

(3) N̄ = {ft(x− θ) : θ ∈ R, t ∈ (0,+∞)},
where ft is density function of form

(4) ft(x) =
exp(−φt(x))

∫

exp(−φt(u)) du
and φt stands for Huber’s function (1).

Let M : (0,+∞) → (0,+∞) be a function given for t > 0 by

M(t) =

∫

exp(−φt(u)) du.

Lemma 1. For t > 0 we have

(5) M(t) =
√
2π

(

2FN(0,1)(t)− 1
)

+
2

t
exp

(

−1

2
t2
)

,

where FN(0,1) : R → (0, 1) stands for the cumulative distribution function of stan-

dard normal distribution.

Proof. For t > 0 we have
∫ t

−t

exp(−φt(x)) dx =

∫ t

−t

exp

(

−1

2
x2

)

dx =
√
2π

(

2FN(0,1)(t)− 1
)

and
∫ +∞

t

exp(−φt(x)) dx =

∫ +∞

t

exp

(

−tx+
1

2
t2
)

dx =
1

t
exp

(

−1

2
t2
)

,

what ends the proof.

Remark 2. Function M is decreasing. Moreover, for t → +∞, we get M(t) →√
2π and

f+∞(x− θ) =
1√
2π

exp

(

−1

2
(x− θ)2

)

,

what is the density function of the distribution N(θ, 1). For t ≥ 3 the difference
M(t) −

√
2π is smaller than 0.0007 and the probability that we observe a value

greater than 3 (in case of θ = 0) is smaller than 0.0015. So in practice, data from
distribution with density function φt(x − θ), when t > 3, are very close to the
normal one.
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LetX1, . . . ,Xn be independent, identically distributed random variables with
density function ft ∈ N̄ . The m.l.e. of η is given by

(6) η̃n =
(

θ̃n, t̃n

)T

= argmax(θ,t)T∈R×(0,+∞)

n
∑

i=1

− (lnM(t) + φt(Xi − θ)) .

Theorem 3. The asymptotic distribution of
√
n(η̃n − η) is normal with expecta-

tion zero (at the model) and the covariance matrix equal
[

D1(t)
−1 0

0 D2(t)
−1

]

,

where

D1(t) =

√
2π

M(t)

(

2FN(0,1)(t)− 1
)

and

D2(t) =
4

t3M2(t)
exp

(

−1

2
t2
)(

1

t
exp

(

−1

2
t2
)

+
√
2π

(

2FN(0,1)(t)− 1
)

)

.

Proof. The model N̄ given by (3) does not satisfy the regularity conditions (see
for example Zacks [6]) because the function

(7) ψt(x) = φ′t(x) =







−t, x < −t,
x, |x| ≤ t,

t, x > t.

is not differentiable at x = −t and x = t. To avoid the problem we can smoothly
modify function φ (using third degree polynomial, for example) in a neighbour-
hood of points −t and t. Moreover, if neighbourhoods are sufficiently small, then
the modification has an insignificant influence on values of estimator (6).

Let H1 and H2 be neighbourhoods of points −t and t, respectively and let
φ̃t : R → [0,+∞) be a function such that φ̃t(x) = φt(x) for x ∈ D = R\(H1∪H2)
and φ̃t satisfies regularity conditions. For x− θ ∈ D we have

∂2

∂θ∂t
ln
exp(−φ̃t(x− θ))

M(t)
=







1, x− θ > t,

0, |x− θ| ≤ t,

−1, x− θ < −t,

∂2

∂θ2
ln
exp(−φ̃t(x− θ))

M(t)
=

{

−1, |x− θ| ≤ t,

0, |x− θ| > t

and

∂2

∂t2
ln
exp(−φ̃t(x− θ))

M(t)
=

4
t4
exp(−t2)− exp

(

−1
2t

2
) (

2
t
+ 4

t3

)

M(t)

M2(t)

+

{

0, |x− θ| ≤ t,

1, |x− θ| > t.
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Hence

Eη

[

− ∂2

∂θ∂t
lnft(X − θ)

]

= 0,

D1(t) = Eη

[

− ∂2

∂θ2
lnft(X − θ)

]

=

√
2π

M(t)

(

2FN(0,1)(t)− 1
)

and

D2(t) = Eη

[

− ∂2

∂t2
lnft(X − θ)

]

=
4

t3M2(t)
exp

(

−1

2
t2
)(

1

t
exp

(

−1

2
t2
)

+
√
2π

(

2FN(0,1)(t)− 1
)

)

.

4. Simulation results for the new model

In simulation study m.l.e. of vector of parameters η = (θ, t)T of distribution from
model N̄ defined by (3) was considered. The computer simulations concerned the
following cases:

C =
{

(θ, t)T : θ = 0, t ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50,
3.00, 4.00, 6.00}

}

.

For each η ∈ C, n = 100 observations were generated randomly. The procedure
was repeated N = 5000 times. For each i ∈ {1, . . . , N}, estimates θ̃100,i and
t̃100,i of parameters θ and t were obtained using m.l.e. Table 1 presents results of
the computer simulations. The table consists of six columns. The first and the
fourth column present vectors of parameters from C, respectively. The second
and the fifth column stand for results concerning parameter θ. The third and the
sixth column — for results concerning parameter t. For each density function the
results have been grouped into three rows. The first one is for the averages of
the 5000 estimates, namely θ̃ = 1

N

∑N
i=1 θ̃100,i and t̃ =

1
N

∑N
i=1 t̃100,i. The second

row stands for sample standard deviations for the estimates (numbers in round
brackets). The third row gives the ”true” asymptotic values for the standard
deviations (numbers in square brackets).

The discussion falls naturally into two parts. The first part concerns esti-
mation of θ. All averages for parameter θ are close to the model one (θ = 0).
Moreover, the greater t is, the smaller sample standard deviation for θ is. The
cases with t ≥ 3 are nearly the same as results getting from m.l.e. of parameter
θ for samples from N(θ, 1). What is more, sample standard deviations are very
close to the asymptotic ones.
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The second part of the discussion concerns estimation of parameter t. These
results are more complicated. For t ∈ {0.25, 0.50, 0.75, 1.00} the averages for
parameter t are close to the model ones. For the cases also sample standard
deviations are close to the asymptotic ones. Clear differences between averages
and model values for parameter t can be noticed for the cases t ∈ {1.25, 1.50, 1.75,
2.00, 2.50}. The differences increase from 0.128 (t = 1.25) to 1.27 (t = 2.50).
It can be said that the bias of considered estimator of parameter t is greater
then zero. Clear differences are also visible between sample standard deviations
and asymptotic standard deviations. The biggest difference can be noticed for
t = 1.5. For the case of t, sample standard deviation is about 300% higher than
corresponding asymptotic one. For t ∈ {1.50, 1.75, 2.00, 2.50} the differences
between sample standard deviations and asymptotic ones decrease (for t = 2.50
the difference is close to zero).

Results concerning t ∈ {3.00, 4.00, 6.00} have been also included. Namely,
samples then seem to be normally distributed N(θ, 1) (see also Remark 2). That
is confirmed by all obtained values for estimator of parameter θ and by averages
for parameter t (all the values are close to each other). For the cases of t, Remark
2 can also be an explanation for increasing differences between sample standard
deviations and asymptotic ones. The differences would be smaller for samples of
greater size.

Table 1. Results for the new model data.

(θ, t)T θ̃ t̃ (θ, t)T θ̃ t̃

0.002 0.254 0 2.487
(0, 0.25)T (0.429) (0.026) (0, 1.75)T (0.106) (1.406)

[0.408] [0.025] [0.105] [0.408]

0.001 0.508 0 3.090
(0, 0.50)T (0.221) (0.053) (0, 2.00)T (0.103) (1.564)

[0.216] [0.051] [0.103] [0.620]

-0.001 0.765 0 3.770
(0, 0.75)T (0.159) (0.087) (0, 2.50)T (0.101) (1.490)

[0.157] [0.082] [0.101] [1.499]

-0.004 1.023 0 3.978
(0, 1.00)T (0.130) (0.155) (0, 3.00)T (0.101) (1.445)

[0.131] [0.123] [0.100] [3.906]

-0.002 1.378 0 4.013
(0, 1.25)T (0.117) (0.581) (0, 4.00)T (0.102) (1.417)

[0.117] [0.183] [0.100] [34.577]

0 1.912 0 4.013
(0, 1.50)T (0.111) (1.094) (0, 6.00)T (0.100) (1.412)

[0.110] [0.272] [0.100] [9427.405]
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5. Simulation results for estimation of location parameter in

normal model

In previous section we discussed results concerning m.l.e. of vector of parameters
η = (θ, t)T of distribution from model defined by (3), where ft is density function
of form (4). In the following section the estimator is used for samples normally
distributed with variance equal 1. Both uncontaminated and contaminated data
are involved. The estimator allows us to estimate true expected value of normal
distribution. The estimating of θ depends on tuning constant t which is also
estimated. Simulation results will show that the greater level of contamination
is, the smaller tuning constant we get.

In simulation study the following levels of contamination have been consid-
ered:

l ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10}.
For each level of contamination a sample that consists of n = 100 elements was
generated randomly. More precisely, (1− l) ∗ 100 elements have been taken from
N(0, 1) and l ∗ 100 elements — from N(10, 25), where 25 denotes variance of the
normal distribution. The procedure was repeated 5000 times. We treat θ = 0 as
true expected value and N(10, 25) is a contaminating distribution. The following
estimators were considered:

• m.l.e.(θ) for the arithmetic mean,

• Huber’s estimators (2) for t ∈ {2, 1.5, 1, 0.75} (θ̂t=2, θ̂t=1.5, θ̂t=1, θ̂t=0.75),

• median,

• (θ̃, t̃)T as the estimator (6).

The results are presented in Table 2. The table consists of nine columns. The first
one gives the level of contamination. The other columns are for results concerning
mentioned estimators. For each level of contamination, the results are presented
in two rows. The first row is for the averages of the 5000 estimates. The second
row (numbers in round brackets) stands for sample standard deviations for the
estimates.

Computer simulation results concern most of all seven estimators of expected
value of distribution N(0, 1). One of them (m.l.e.) is not robust - it is not worth
taking it as an estimator of expected value in case of contaminated data (l > 0).
The other estimators (θ̂t=2, θ̂t=1.5, θ̂t=1, θ̂t=0.75, θ̃, median) are robust. In case
of model data (l = 0) averages are close to θ = 0 but median has the largest
sample standard deviation and estimators θ̂t=2, θ̂t=1.5, θ̂t=1, θ̂t=0.75, θ̃ have similar
sample standard deviations. For contaminated data bias of estimator θ̃ seems to
be very close to median’s one but sample standard deviation for θ̃ is smaller than
median’s one. However, the bigger level of contamination is, the closer to median
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estimator θ̃ is. When level of contamination increases, the bias of estimator θ̃ gets
greater slowly and biases of Huber’s estimators increase faster. Sample standard
deviations for Huber’s estimators seem no to change significantly. What is more,
for the level of contamination where t̃ ≈ 1.5 (l = 0.01), estimators θ̂t=1.5 and θ̃
are almost the same. Similar results can be noticed in case of t̃ ≈ 1 (l = 0.03,
θ̂t=1 and θ̃ are comparable) and in case of t̃ ≈ 0.75 (l = 0.06, θ̂t=0.75 and θ̃ are
comparable).

In case of Huber’s estimator we have to choose the tuning constant by our-
selves. The estimator θ̃ is based on Huber’s estimator but the choice of tuning
constant is chosen without any inference of the researcher. The choice of the
tunning constant depends on the data related to the level of contamination. The
greater level of contamination is, the smaller tuning constant t has been chosen.

Table 2. Data from N(0, 1) contaminated by N(10, 25)

l m.l.e.(θ) θ̂t=2 θ̂t=1.5 θ̂t=1 θ̂t=0.75 median θ̃ t̃

0 0 0 0 0 0 0 0 4.021
(0.100) (0.101) (0.102) (0.105) (0.108) (0.123) (0.101) (1.418)

0.01 0.100 0.020 0.017 0.014 0.014 0.014 0.016 1.551
(0.110) (0.102) (0.103) (0.107) (0.109) (0.124) (0.105) (0.786)

0.02 0.203 0.041 0.034 0.029 0.028 0.025 0.031 1.153
(0.121) (0.101) (0.103) (0.106) (0.109) (0.125) (0.105) (0.252)

0.03 0.299 0.062 0.051 0.043 0.041 0.038 0.044 1.005
(0.132) (0.105) (0.107) (0.110) (0.113) (0.128) (0.110) (0.154)

0.04 0.402 0.083 0.069 0.058 0.055 0.049 0.057 0.894
(0.142) (0.105) (0.106) (0.109) (0.113) (0.130) (0.111) (0.108)

0.05 0.502 0.105 0.087 0.074 0.069 0.062 0.070 0.815
(0.148) (0.103) (0.105) (0.108) (0.111) (0.128) (0.110) (0.092)

0.06 0.602 0.128 0.106 0.090 0.084 0.077 0.084 0.754
(0.157) (0.106) (0.107) (0.111) (0.113) (0.130) (0.114) (0.083)

0.07 0.696 0.149 0.123 0.104 0.097 0.089 0.096 0.705
(0.164) (0.107) (0.108) (0.111) (0.114) (0.130) (0.115) (0.074)

0.08 0.798 0.171 0.142 0.120 0.112 0.102 0.110 0.658
(0.175) (0.108) (0.109) (0.112) (0.115) (0.132) (0.116) (0.068)

0.09 0.895 0.193 0.159 0.134 0.126 0.114 0.122 0.620
(0.176) (0.105) (0.106) (0.109) (0.113) (0.130) (0.115) (0.062)

0.10 0.998 0.219 0.181 0.154 0.144 0.132 0.139 0.585
(0.184) (0.108) (0.109) (0.112) (0.115) (0.133) (0.118) (0.057)
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