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Abstract

Exact confidence intervals for each of the endpoints a and b of the uniform
distribution on the interval [a, b] with unknown a and b, as well as an exact
confidence rectangle for the pair (a,b), are given.
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Let X1,...,X,, be independent identically distributed (iid) random variables,
each uniformly distributed on the interval [a, b], for some unknown real a and b
such that a < b. We are assuming that n > 2.

Let Y; .= )g":a“, so that the Y;’s are iid, each uniformly distributed on [0, 1],
and for the corresponding order statistics one has X(;) = a + (b — a)Y(;). Let

Rn = X(n) - X(l),

the sample range. Then, for any real ¢ > 0,

1+¢c
=P (Xa) >atcRn) =P (Ya) > Vi = Y))e) = P‘B<Y<n> <Yo—, )

The joint probability density of (Y{1y, ¥{5)) is given by the formula g(z1, z,) =
n(n —1)(zn — 21)" 21{0 < 21 < z, < 1}, where [{A} denotes the indicator of an
assertion A. So,
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whence

C=Cq:= a /(=1 g

and
P (X(l) —coRp <a< X(l)) =P (X(l) —co Ry < a) =1—-aq,

for each a € (0,1). Therefore and in view of symmetry, one has

Proposition 1.

[X(1) — caln, X(1)] is an exact (1 — a)-confidence interval for a.

[X(n)> X(n) + caRn] is an ezact (1 — a)-confidence interval for b.
Using the Bonferroni rule, we obtain the following.
Corollary 2. For any « € (0,1),
(2) X1y = CayaRns X1yl X [X(nys X(n) + Cay2 R

is a (1 — a)-confidence rectangle for the pair (a,b), in the sense that the point
(a,b) is contained in this (random) rectangle with probability at least 1 — av.

Consider now the “joint probability”
(3) p(e) =P (a € [Xq) — cRu, X)), b € [X(), X(n) + cRu)),

again for real ¢ > 0. By a calculation similar to, but a bit more involved than,
(1), one can obtain the following rather simple expression for p(c):

(4) p(e) =1—-21+ )"+ (1 +20)
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Indeed, letting £(z1) := 1 A (% \Y 1;“%), by (3) we have

p(C) =P (Yv(l) < C(Yv(n) - }/'(1))7}/(11) >1- C(Yv(n) - Yv(l)))

1 1
= / ndz / dzn (n —1)(z, — 21)" 2
0 Z(Zl)
)

c¢/(142¢
= / ndz (1—2z)" ' [1—(14¢)'"]
0

c/(1+4c)
—|—/ ndz [(1— z) - z’f*lcl_"]
c¢/(142¢)

=1-214c) "+ (1+2)

Using (3) or (4), it is easy to see that p(c) continuously increases from 0 to 1
as ¢ increases from 0 to co. So, given any natural n > 2 and any real a € (0, 1),
it is easy to find (numerically) the unique positive real root, ¢, = €y q, of the
equation

(5) p(éa) =1—-a,
and ¢, continuously decreases in « € (0,1). Thus, we have
Theorem 3.
[X(1) = Ealn, X(1)] X [X(n), X(n) + CalRn]
is an exact (1 — a)-confidence rectangle for the pair (a,b).

Cf. the “excessive”, “conservative” (1 — a)-confidence rectangle (2).

Let us now give explicit upper bounds on the solution é, of equation (5); we
shall see that these upper bounds are actually quite close to ¢,. First here, note
that we always have ¢ < cq/2: the coefficient ¢, for the exact (1 — a)-confidence
rectangle is less than the “excessive” Bonferroni coefficient c,/9; this can also be
supported by the following simple analytical argument: in view of (4),

p(ca/2) =l-a+ (1 + 26(:\:/2)1711 >l-a= p(éa).
Moreover,
(6) Ca < C_T=5 < Caj2+a2/8 < Caj2-

Indeed, the latter two inequalities in (6) follow because 1 — /1 —a >
a/2 + a?/8 > a/2 and ¢, decreases in a. Concerning the first inequality in
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(6), note that, by (5) and (4), for ¢ = ¢, we have 1 —a = p(c) > 1 —2(1+c)! ™" +
(14¢)2077) = (1 — (14 ¢)'"")2, whence (1 +¢)'™ > 1 — /T — a, so that indeed
c

Actually, 1 — /1 — a is the best (that is, largest) possible value (say 3)
such that inequality ¢, < cg holds for all n. More specifically, for each 8 €
(1 = v1—a,1) one has ¢, > cg eventually — that is, for all large enough n.
Indeed, take any § € (1 — /1 —a,1). Letting n — oo, by I'Hospital’s rule we
have

In

(7) cg=p"10D —1= (14 0(1)),

1—n

so that (1+2c5)! ™" = (1—{—%)1_" — 2, and hence p(cz) — 1-26+3? =
(1—-8)2 <1—a=p(&). Therefore and because p(c) is increasing in ¢ > 0, it is
now confirmed that the inequality ¢, > cg holds eventually.

It appears that the coefficient ¢, differs rather little from the somewhat
excessive “Bonferroni” coefficient ¢, /3, and then of course ¢, differs even less
from c,/9442/8 and, especially, ¢;  g7—;. This is illustrated in Table 1.

o ‘n H Ca “—vi—a Ca/24+02/8 | Caj2
10 0.500243 0.504499 0.504552 0.50663
0.05 | 100 0.0378116 0.0378307 0.0378341 0.0379643
1000 || 0.00368642 | 0.0036866 0.00368692 | 0.0036994
10 0.797947 0.801146 0.801148 0.801648
0.01 | 100 0.0549413 0.0549496 0.0549498 0.0549764
1000 || 0.00531511 | 0.00531518 | 0.0053152 0.00531771

Table 1. Approximate values of ¢u,¢;_ /15, Ca/2+a2/8sCay2 for a € {0.05,0.01} and
n € {10,100, 1000}.

So, it appears reasonable to use ¢;_ 1 = (1 — VI—a) V=D _ 1 as the
initial, and already good, approximation to the root ¢, of equation (5).

One may also note that, in view of (7), the coefficient ¢, and hence the length
ca Ry of the confidence interval decrease, roughly, inversely proportionally to n
for large n.

In conclusion, let us mention some related results found in the literature. In
[2], following [4], an exact confidence interval for the real parameter 6 was given,

for a family of densities of the form fy(x) = % {—a(f) < = < b(#)}, where a(0)
and b(#) are either both increasing or both decreasing in 6. A particular case
of this setting is that of the family of the uniform distributions on the interval
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[—0, 0] with a unknown 6 > 0. In [1], an exact confidence interval for the standard
deviation of a uniform distribution was obtained, which was an improvement on
earlier results in [3]. However, this author is not aware of any results concerning
confidence rectangles for the two completely unknown endpoints of a uniform
distribution.
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