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Abstract

Exact confidence intervals for each of the endpoints a and b of the uniform
distribution on the interval [a, b] with unknown a and b, as well as an exact
confidence rectangle for the pair (a, b), are given.
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Let X1, . . . ,Xn be independent identically distributed (iid) random variables,
each uniformly distributed on the interval [a, b], for some unknown real a and b
such that a < b. We are assuming that n > 2.

Let Yi :=
Xi−a
b−a , so that the Yi’s are iid, each uniformly distributed on [0, 1],

and for the corresponding order statistics one has X(i) = a+ (b− a)Y(i). Let

Rn := X(n) −X(1),

the sample range. Then, for any real c > 0,

α := P
(

X(1) > a+ cRn

)

= P
(

Y(1) > (Y(n) − Y(1))c
)

= PB

(

Y(n) < Y(1)
1 + c

c

)

.

The joint probability density of (Y(1), Y(n)) is given by the formula g(z1, zn) =
n(n− 1)(zn − z1)

n−2 I{0 < z1 < zn < 1}, where I{A} denotes the indicator of an
assertion A. So,
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(1)

α =

∫ 1

0
n dz1

∫ 1∧[z1(1+c)/c]

z1

dzn (n − 1)(zn − z1)
n−2

=

∫ 1

0
n dz1 [(1− z1) ∧ (z1/c)]

n−1

=

∫ 1

c/(c+1)
n dz1 (1− z1)

n−1 +

∫ c/(c+1)

0
n dz1 (z1/c)

n−1 =
1

(1 + c)n−1
,

whence

c = cα := α−1/(n−1) − 1

and

P
(

X(1) − cαRn < a < X(1)

)

= P
(

X(1) − cαRn 6 a
)

= 1− α,

for each α ∈ (0, 1). Therefore and in view of symmetry, one has

Proposition 1.

[X(1) − cαRn,X(1)] is an exact (1− α)-confidence interval for a.

[X(n),X(n) + cαRn] is an exact (1− α)-confidence interval for b.

Using the Bonferroni rule, we obtain the following.

Corollary 2. For any α ∈ (0, 1),

(2) [X(1) − cα/2Rn,X(1)]× [X(n),X(n) + cα/2Rn]

is a (1 − α)-confidence rectangle for the pair (a, b), in the sense that the point
(a, b) is contained in this (random) rectangle with probability at least 1− α.

Consider now the “joint probability”

(3) p(c) := P
(

a ∈ [X(1) − cRn,X(1)], b ∈ [X(n),X(n) + cRn]
)

,

again for real c > 0. By a calculation similar to, but a bit more involved than,
(1), one can obtain the following rather simple expression for p(c):

(4) p(c) = 1− 2(1 + c)1−n + (1 + 2c)1−n.
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Indeed, letting ℓ(z1) := 1 ∧
(

(1+c)z1
c ∨ 1+cz1

1+c

)

, by (3) we have

p(c) = P
(

Y(1) < c(Y(n) − Y(1)), Y(n) > 1− c(Y(n) − Y(1))
)

=

∫ 1

0
n dz1

∫ 1

ℓ(z1)
dzn (n− 1)(zn − z1)

n−2

=

∫ c/(1+2c)

0
n dz1 (1− z1)

n−1
[

1− (1 + c)1−n
]

+

∫ c/(1+c)

c/(1+2c)
n dz1

[

(1− z1)
n−1 − zn−1

1 c1−n
]

= 1− 2(1 + c)1−n + (1 + 2c)1−n.

Using (3) or (4), it is easy to see that p(c) continuously increases from 0 to 1
as c increases from 0 to ∞. So, given any natural n > 2 and any real α ∈ (0, 1),
it is easy to find (numerically) the unique positive real root, c̃α = c̃n,α, of the
equation

(5) p(c̃α) = 1− α,

and c̃α continuously decreases in α ∈ (0, 1). Thus, we have

Theorem 3.

[X(1) − c̃αRn,X(1)]× [X(n),X(n) + c̃αRn]

is an exact (1− α)-confidence rectangle for the pair (a, b).

Cf. the “excessive”, “conservative” (1− α)-confidence rectangle (2).
Let us now give explicit upper bounds on the solution c̃α of equation (5); we

shall see that these upper bounds are actually quite close to c̃α. First here, note
that we always have c̃α < cα/2: the coefficient c̃α for the exact (1−α)-confidence
rectangle is less than the “excessive” Bonferroni coefficient cα/2; this can also be
supported by the following simple analytical argument: in view of (4),

p(cα/2) = 1− α+ (1 + 2cα/2)
1−n > 1− α = p(c̃α).

Moreover,

(6) c̃α < c1−
√
1−α < cα/2+α2/8 < cα/2.

Indeed, the latter two inequalities in (6) follow because 1 −
√
1− α >

α/2 + α2/8 > α/2 and cα decreases in α. Concerning the first inequality in



18 I. Pinelis

(6), note that, by (5) and (4), for c = c̃α we have 1−α = p(c) > 1−2(1+ c)1−n+
(1+ c)2(1−n) = (1− (1+ c)1−n)2, whence (1+ c)1−n > 1−

√
1− α, so that indeed

c̃α = c < c1−
√
1−α.

Actually, 1 −
√
1− α is the best (that is, largest) possible value (say β)

such that inequality c̃α < cβ holds for all n. More specifically, for each β ∈
(1 −

√
1− α, 1) one has c̃α > cβ eventually – that is, for all large enough n.

Indeed, take any β ∈ (1 −
√
1− α, 1). Letting n → ∞, by l’Hospital’s rule we

have

(7) cβ = β−1/(n−1) − 1 =
ln β

1− n
(1 + o(1)),

so that (1+2cβ)
1−n = (1+ (2+o(1)) lnβ

1−n )1−n → β2, and hence p(cβ) → 1−2β+β2 =

(1− β)2 < 1− α = p(c̃α). Therefore and because p(c) is increasing in c > 0, it is
now confirmed that the inequality c̃α > cβ holds eventually.

It appears that the coefficient c̃α differs rather little from the somewhat
excessive “Bonferroni” coefficient cα/2, and then of course c̃α differs even less
from cα/2+α2/8 and, especially, c1−

√
1−α. This is illustrated in Table 1.

α n c̃α c1−
√
1−α cα/2+α2/8 cα/2

0.05

10 0.500243 0.504499 0.504552 0.50663

100 0.0378116 0.0378307 0.0378341 0.0379643

1000 0.00368642 0.0036866 0.00368692 0.0036994

0.01

10 0.797947 0.801146 0.801148 0.801648

100 0.0549413 0.0549496 0.0549498 0.0549764

1000 0.00531511 0.00531518 0.0053152 0.00531771

Table 1. Approximate values of c̃α, c1−
√

1−α, cα/2+α2/8, cα/2 for α ∈ {0.05, 0.01} and
n ∈ {10, 100, 1000}.

So, it appears reasonable to use c1−
√
1−α = (1−

√
1− α )−1/(n−1) − 1 as the

initial, and already good, approximation to the root c̃α of equation (5).

One may also note that, in view of (7), the coefficient cα and hence the length
cαRn of the confidence interval decrease, roughly, inversely proportionally to n
for large n.

In conclusion, let us mention some related results found in the literature. In
[2], following [4], an exact confidence interval for the real parameter θ was given,

for a family of densities of the form fθ(x) =
g(x)
h(θ) I{−a(θ) 6 x 6 b(θ)}, where a(θ)

and b(θ) are either both increasing or both decreasing in θ. A particular case
of this setting is that of the family of the uniform distributions on the interval
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[−θ, θ] with a unknown θ > 0. In [1], an exact confidence interval for the standard
deviation of a uniform distribution was obtained, which was an improvement on
earlier results in [3]. However, this author is not aware of any results concerning
confidence rectangles for the two completely unknown endpoints of a uniform
distribution.
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