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using the generalized pivotal quantity approach. Simulation results show
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1. Introduction

The study of distance measures is important in addressing practical problems
such as: hypothesis testing, classification, outlier detection and density estima-
tion, to name a few. Distance or similarity criteria describe how close two dis-
tributions are. Similarity can sometimes be assessed based on random samples
using graphical summaries such as histograms and boxplots, plotted side-by-side,
or calculating summary measures such as the correlation coefficient. However

DMPS Page

http://dx.doi.org/10.7151/dmps.1199
https://www.discuss.wmie.uz.zgora.pl/ps


6 S. Jose and S. Thomas

these measures do not always adequately represent the similarity, and this mo-
tivates the use of formal measures such as the overlap coefficient (OVL). In this
note we shall consider the OVL to study the similarity of two normal populations,
whose means could be different, and whose variances could also be different. The
study of the OVL of two normal distributions typically assume equal variances;
it is this assumption that is relaxed in our work. Furthermore, the OVL measure
that we shall use is the one proposed by [5].

By definition, OVL is the area of intersection of the graphs of two probability
density functions. Let f1(x) and f2(x) be probability density functions of two
populations. Matusita’s measure of OVL is defined as

ρ =

∫

√

f1(x)f2(x)dx.(1)

For discrete distributions, one can replace the integral in (1) with summation.
Further, this can be generalized to multivariate distributions as well. As OVL
gives the common area under two probability density functions, it’s scale is from
0 to 1. It has value 0 if the two distributions are entirely different, and has value
1 if the two distributions are identical. Note that Matusita’s measure is invariant
under any one-to-one differentiable transformation.

Inference concerning the OVL has been addressed by various authors. [2]
considered hypothesis testing and interval estimation of the overlap of two normal
distributions with equal variances. [6] estimated Matusita’s measure of similarity
between two multivariate normal distributions and they calculated asymptotic
variance and bias of the estimator. [7] addressed the problem of making inferences
about the overlap coefficients based on normal densities with equal means using
jackknife, bootstrap, Taylor series approximation and transformation methods;
the authors conclude that the bootstrap method is to be preferred.

In the present work, we shall explore the method based on the generalized
pivotal quantity (GPQ) to address inference problems involving the OVL of two
normal distributions with unequal means and unequal variances. It appears that
for the parameter ρ defined in equation (1), there is no conventional pivotal
quantity that will facilitate the computation of confidence limits. Thus we shall
appeal to the concept of a generalized pivotal quantity (GPQ) due to [9, 10]
and [11] for computing confidence limits. Numerous applications have shown
that the GPQ idea can provide accurate confidence limits in situations where
conventional methods appear to be non-existent. For example, the GPQ concept
is used in [4] for computing accurate confidence limits for a log-normal mean,
and in [3] for assessing occupational exposure using confidence limits for various
parametric functions in the one way random effects model. [8] used the GPQ idea
to construct exact confidence limits for the reliability function of a two parameter
exponential distribution.
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In the next section, we shall explain the construction of confidence intervals
for ρ using the GPQ idea, and also mention the percentile bootstrap and boot-
strap t methods for computing confidence limits. The solutions obtained by the
three methods are compared in Section 3 using a simulation study to estimate
the coverage probability and expected length of the confidence intervals. The
simulation study indicates that overall, the GPQ method exhibits better perfor-
mance compared to the bootstrap approaches. An illustrative example is given
in Section 4.

2. Confidence intervals for ρ

Matusita’s measure of OVL of two normal populations N(µ1, σ
2

1
) and N(µ2, σ

2

2
)

simplifies to

ρ =

√
2σ1σ2

(σ2

1
+ σ2

2
)1/2

exp

{

−
1

4

(µ1 − µ2)
2

(σ2

1
+ σ2

2
)

}

.(2)

If µ1 = µ2, we have

ρ =

√
2σ1σ2

(σ2

1
+ σ2

2
)1/2

.(3)

We shall now introduce the different confidence intervals for ρ, starting with the
generalized confidence interval, i.e., the confidence interval constructed using the
GPQ.

2.1. Generalized confidence interval

Let Xij , j = 1, . . . , ni be a random sample of size ni from N(µi, σ
2

i ), i = 1, 2. Let

X i =
1

ni

ni
∑

j=1

Xij, and S2

i =
1

ni − 1

ni
∑

j=1

(Xij −X i)
2, i = 1, 2.

Then

Zi =
(Xi − µi)

√
ni

σi
∼ N(0, 1) and Ui =

(ni − 1)S2

i

σ2

i

∼ χ2

ni−1
,

where χ2
r denotes a chi-square distribution with r degrees of freedom. Let xi and

s2i be the observed values of Xi and S2

i , respectively. The GPQs of σ2

i and µi,
say Tσ2

i

and Tµi
, respectively, are given by

Tσ2

i

=
(ni − 1)s2i

Ui
, and Tµi

= xi − Zi

√

Tσ2

i

ni
(4)
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for i=1,2; see [9]. In particular, we note that given the observed data, the proba-
bility distributions of Tσ2

i

and Tµi
are free of unknown parameters and that their

observed values are σ2

i and µi, respectively, for i = 1, 2. A GPQ for ρ can be
obtained by substituting Tσ2

i

and Tµi
in the place of σ2

i and µi, respectively. We
shall denote the GPQ for ρ by Tρ.

With Tρ so defined, let Tρ(α) denote the 100αth percentile of Tρ. Then the
100(1 − α)% generalized lower confidence limit for ρ is Tρ(α). Also, a two-sided
100(1 − α)% generalized confidence interval for ρ is (Tρ(α/2), Tρ(1− α/2)).

2.2. Bootstrap t confidence interval

Let ρ̂ denote the estimate of ρ obtained by replacing µi with X̄i and σ2

i with S2

i

(i = 1, 2) in the expression for ρ given in equation (2). The asymptotic variance
of ρ̂ is derived in [6], and is given by

V (ρ̂) =
ρ2

8

2
∑

i=1

{

2βi
ni

+
1

ni − 1
(1− 4αi + 4α2

i + 2βi + β2

i − 4αiβi)

}

,

where

αi =
σ2

i

σ2

1
+ σ2

2

and βi =
(µ1 − µ2)

2σ2

i

(σ2

1
+ σ2

2
)2

,

for i = 1, 2. In order to develop the bootstrap t confidence interval for ρ, let
(X̄∗

ib, S
2∗

ib ), b = 1, 2, . . . , B, be a parametric bootstrap sample of size B generated
according to

X̄∗

ib ∼ N

(

X̄i,
S2

i

ni

)

,
(ni − 1)S2∗

ib

S2

i

∼ χ2

ni−1
,

i = 1, 2. Now let ρ̂∗(b) denote the estimate of ρ obtained from the bth parametric
bootstrap sample, and let se∗(b) denote its asymptotic standard error; the latter
is obtained as the square root of the asymptotic variance given above, estimated
using the bth parametric bootstrap sample. Now define the bootstrap t statistic

t∗(b) =
ρ̂∗(b)− ρ̂

se∗(b)
,

b = 1, 2, . . . , B, and let t̂γ denote the upper γ percentile of the t∗(b)−values. The
100(1 − α)% bootstrap t confidence interval for ρ is given by

(

ρ̂− t̂α/2 × se(ρ̂), ρ̂+ t̂α/2 × se(ρ̂)
)

,

where se(ρ̂) is the square root of the estimated asymptotic variance.
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2.3. Percentile bootstrap

The percentile bootstrap consists of using the 100(α/2)th and 100 (1− α/2)th

percentiles of the ρ̂∗(b) values as the respective lower and upper limits of a 100(1−
α)% confidence interval for ρ.

3. Simulation study

We shall now report estimated coverage probabilities and expected lengths of the
95% two sided confidence intervals for ρ, computed by the methods described in
the previous paragraph. Two scenarios were considered for the simulation; we
shall refer to them as simulation scenarios (I) and (II), given below.

Simulation scenario (I): µ1 = 0, µ2 = 0, σ2

1 = 1, σ2

2 = 900, ρ = 0.2581

µ1 = 0, µ2 = 0, σ2

1
= 9, σ2

2
= 36, ρ = 0.8944

µ1 = 2, µ2 = 2, σ2

1
= 1, σ2

2
= 36, ρ = 0.5695

Simulation scenario (II): µ1 = 0, µ2 = 1, σ2

1 = 1, σ2

2 = 2, ρ = 0.8933

µ1 = 0, µ2 = 3, σ2

1 = 1, σ2

2 = 2, ρ = 0.4587

µ1 = 2, µ2 = 3, σ2

1 = 1, σ2

2 = 2, ρ = 0.1209

Tables 1–2 give the results for a few choices of the sample size (n1, n2). The
results are tabulated against the values of ρ only. The computations are done
using R, based on 5,000 simulated samples. For implementing the bootstrap,
5000 parametric bootstrap samples were used. For computing the GPQ based
confidence interval, 5,000 values of the GPQ were generated for each simulated
sample. Tables 1–2 give the estimated coverage probability as well as the left
tail and right tail coverages of the different confidence intervals. In the tables,
‘Length’ denotes the expected length of the confidence intervals, estimated by
simulation.
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The numerical results in Table 1 and Table 2 show that in terms of coverage
probability, the GPQ method is to be preferred; the resulting confidence interval
has coverages very close to the nominal level of 0.95 in all the cases considered for
the simulation. Furthermore, only the GPQ based confidence interval gives left
and right tail coverages close to 0.025 (in most cases). The percentile bootstrap
does provide reasonable coverages in most cases. However, as can be seen from
Table 2, the confidence interval based on the bootstrap t has poor coverages in
several cases. In terms of expected length, the comparison between the GPQ
method and the percentile bootstrap is mixed; but they are mostly comparable.
Our overall recommendation is to use the confidence interval based on the GPQ
approach.

4. An Example

We shall now illustrate our methodology using an example taken from [1] on the
nitrogen content of Iowa soils with and without the bacterium Azetobactor. The
data consists of 13 soil samples with the bacterium, and 10 samples without the
bacterium. It can be verified that both sets of observations follow normal dis-
tributions. The maximum likelihood estimates of the parameters are µ̂1=44.92,
σ̂2

1
=147.24, µ̂2=20.8 and σ̂2

2
=24.18. The estimate of Matusita’s measure of sim-

ilarity is ρ̂ = 0.3571. We computed 95% confidence intervals for ρ using (i) the
GPQ method (using 10,000 GPQ values), (ii) bootstrap t and (iii) the percentile
bootstrap based on 10,000 parametric bootstrap samples. The confidence inter-
vals constructed using these methods are (0.1579, 0.6511), (0.1909, 0.7959) and
(0.1100, 0.5265), respectively. We note that the interval based on the percentile
bootstrap is shifted to the left of the interval based on the GPQ method, and
the latter is shifted to the left of the bootstrap t interval. This behavior among
the three intervals reflects the differences noticed among the coverage probabil-
ities reported in Tables 1-2, especially the left and right tail coverages. Given
the significant differences among the intervals, it is important to use an interval
that performs satisfactorily in terms of the coverage probabilities and expected
lengths. Our recommendation is to use the interval based on the GPQ method-
ology.

5. Discussion

The OVL coefficient is a widely used measure to assess the similarity of two
distributions. For two normal populations with unequal means and unequal vari-
ances, we have considered the interval estimation of the OVL coefficient, and
have assessed the performance of different confidence intervals using simulations.



Interval estimation of the overlap coefficient of ... 13

The simulation results and an illustrative example have brought out the differ-
ences among the confidence intervals based on the GPQ method, bootstrap t and
percentile bootstrap. Even though the bootstrap is a well established method-
ology, the GPQ based confidence interval appears to be the one with the most
satisfactory performance in terms of coverage probability.
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