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Abstract

In this paper, a two-sample problem in a high-dimensional setting, where
the data dimension is larger than the sample size, is considered. In such set-
ting, the Hotelling’s test is not applicable due to singularity of the pooled
sample covariance matrix. Recently, Zhang and Pan (2016) proposed a per-
mutation test based on several cluster subspaces of lower dimension, where
the Hotelling’s statistic can be applied. This paper considers a modification
of this test using other dissimilarity measure. To calculate clusters, a cutoff
measure is established. The new testing procedure is shown to be invari-
ant under linear transformations of the marginal distributions. Simulation
studies indicate that the new test performs comparable to or even better in
certain situations than the test of Zhang and Pan (2016) in terms of power.
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1. Introduction

Let us consider a two-sample problem for multivariate data. We assume that
X1, . . . ,Xn1

and Y1, . . . ,Yn2
are two random samples generated in an indepen-

dent and identically distributed manner from independent p-dimensional normal
random vectors X and Y. Moreover, the vectors X and Y have mean vectors µ1

and µ2, respectively, and the same covariance matrix Σ > 0, which are all fixed
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and unknown. The problem of interest is to test the null hypothesis H0 : µ1 = µ2

against the alternative hypothesis H1 : µ1 6= µ2.

In the case of p ≤ n := n1 + n2 − 2, the Hotelling’s test is usually used to
solve the above problem (Anderson [1]). However, for p > n, this test can not
be applied, since the pooled sample covariance matrix is not invertible. Many
ideas on how avoid this singularity problem are studied in the literature. Bai and
Saranadasa [2], Srivastava and Du [8] and Chen and Qin [3] assumed indepen-
dence of variables and considered test statistics replacing the sample covariance
matrix in the Hotelling’s statistic by the identity matrix or diagonal matrix con-
taining sample variances of the variables. Unfortunately, this assumption may be
unrealistic, for instance, for gene expressions (Thulin [9]). Moreover, not taking
into account the information about the covariance structure may cause signifi-
cant loss of power when the variables are dependent. More use of the dependence
structure was made by Thulin [9] and Zhang and Pan [10]. They considered
the tests based on random and cluster subspaces of variables, respectively. In
these lower-dimensional subspaces, the Hotelling’s statistic is well defined. So,
this test statistic is computed in each subspace, and the overall test statistic is
the sum of statistics of subspaces. The finale p-value is obtained by permuta-
tion method. The testing procedures of Thulin [9] and Zhang and Pan [10] offer
higher power than competing ones when the variables are dependent. The results
of Zhang and Pan [10] indicate that their test seems to be more powerful and less
computationally intensive than that of Thulin [9].

In this paper, we consider a modification of the test of Zhang and Pan [10],
which results in better power in certain scenarios. Zhang and Pan [10] used
1-Pearson correlation coefficient as a dissimilarity measure, which first clusters
together the highly positively correlated variables. However, highly negatively
correlated variables are clustered at the end, which is a little strange. We pro-
pose to use 1-coefficient of determination as the dissimilarity measure, which
first clusters together highly positively or negatively correlated variables. (By
the coefficient of determination, we mean the square of the Pearson correlation
coefficient.) At the end, the least correlated variables are clustered. In this way,
we treat negatively and positively correlated variables more “fair”. For the new
dissimilarity measure, we establish a cutoff for calculating the first clusters to
restrain the effect of statistical fluctuations for coefficient of determination. Sim-
ilarly as the solutions of Thulin [9] and Zhang and Pan [10], the new testing
procedure is invariant under linear transformations of the marginal distributions.
This is important as it is common, for example, for genetic data to be rescaled
in the sense of dividing the marginal distributions by their standard deviations.
Conducted simulation studies show that the new test is comparable to the test-
ing procedure of Zhang and Pan [10] in terms of size control and power, when all
non-zero correlations are positive. On the other hand, the new method may be
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more powerful in the presence of negatively correlated variables.

The remainder of the paper is organized as follows: In Section 2, the new
testing procedure is proposed. The choice of its parameters as well as its prop-
erties are also discussed there. Section 3 presents the description of simulation
experiments and discussion of their results. Section 4 concludes the paper.

2. Testing procedure

We consider the following permutation procedure, which is a modified version of
that of Zhang and Pan [10]:

1. Input: observed data X1, . . . ,Xn1
, Y1, . . . ,Yn2

, cutoff dissimilarity measure
CDM, maximum number of variables in a cluster MNVC ≤ n1 + n2 − 2,
number of random permutations B. Choice of CDM and MNVC is described
below.

2. Perform hierarchical clustering of variables by using 1−coefficient of determi-
nation as a dissimilarity measure, average linkage and observations of both
groups.

3. Calculate clusters based on cutoff dissimilarity measure CDM.

4. Cluster each cluster or sub-cluster consisting of more than MNVC variables,
into two sub-clusters as long as each cluster or sub-cluster has more than
MNVC variables. Let Nc denote a final number of clusters.

5. Compute the value of the test statistic given by

(1) Tobs =

Nc
∑

k=1

T 2
k ,

for the original data, where T 2
k is the Hotelling’s statistic for the k-th cluster,

k = 1, . . . , Nc, i.e.,

T 2
k =

n1n2

n1 + n2
(X̄k − Ȳk)⊤Σ̂

−1
k (X̄k − Ȳk),

X̄k = n−1
1

∑n1

i=1Xk,i, Ȳk = n−1
2

∑n2

i=1 Yk,i and

nΣ̂k =

n1
∑

i=1

(Xk,i − X̄k)(Xk,i − X̄k)⊤ +

n2
∑

i=1

(Yk,i − Ȳk)(Yk,i − Ȳk)⊤

are the sample means and pooled sample covariance matrix of the observa-
tions for variables from k-th cluster (n = n1 + n2 − 2).
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6. From all observations X1, . . . ,Xn1
,Y1, . . . ,Yn2

, select randomly without re-
placement n1 observations for the first new sample. The remainder of the
observations forms the second new sample.

7. Compute the value of the test statistic (1) for new data created in step 6
using the same clusters obtained in steps 2-4.

8. Repeat steps 6-7 B times. Let T1, . . . , TB denote the obtained values of the
test statistic.

9. Output: P -value computed as B−1
∑B

j=1 I(Tj ≥ Tobs), where I(S) stands for
the usual indicator function on the set S (takes value 1 if S is true and 0
otherwise).

Remark 1.

1. Since each cluster contains no more than n1 + n2 − 2 variables, the pooled
sample covariance matrices Σ̂k computed in Step 5 of the above procedure
are in fact invertible. Hence, the test statistic (1) is well defined.

2. As we can notice, in Step 7 of the above procedure, the value of the test
statistic is computed by using the same clusters as for the original data.
This follows from the fact that permutation of the data does not affect the
correlations of variables. Thus, clustering of the data can be performed only
for the original observations.

Now, we have to specify how to choose the cutoff dissimilarity measure CDM
and the maximum number of variables in a cluster MNVC.

The cutoff dissimilarity measure CDM will be selected to restrain the effect
of statistical fluctuations for the sample correlation coefficient and hence also for
coefficient of determination. It is well known that, especially for small sample
size, the sample correlation coefficient may be quite large when variables are
in fact uncorrelated. We have

(p
2

)

= p(p − 1)/2 coefficients of determination
for p variables. By the normality assumption, the Fisher z-transformation of
the sample correlation coefficient r is approximately normally distributed. More
precisely, we have

z =
1

2
log

(

1 + r

1 − r

)

∼ N

(

1

2
log

(

1 + ρ

1 − ρ

)

,
1√
n− 1

)

,

approximately, where log denotes the natural logarithm. Let qN be the 1 −
1/[p(p − 1)] quantile of N(0, 1) distribution. Therefore, when ρ = 0, we obtain

(2) P

(

−q′N ≤ 1

2
log

(

1 + r

1 − r

)

≤ q′N

)

= 1 − 2

p(p− 1)
,
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approximately, where q′N = qN/(n − 1)1/2. Since the inverse of the Fisher z-
transformation given by r = (e2z − 1)/(e2z + 1) is increasing and odd function,
we have

P

(

−q′N ≤ 1

2
log

(

1 + r

1 − r

)

≤ q′N

)

= P

(

e−2q′
N − 1

e−2q′
N + 1

≤ r ≤ e2q
′

N − 1

e2q
′

N + 1

)

= P

(

−e2q
′

N − 1

e2q
′

N + 1
≤ r ≤ e2q

′

N − 1

e2q
′

N + 1

)

(3)

= P

(

|r| ≤ e2q
′

N − 1

e2q
′

N + 1

)

.

By (2) and (3), we conclude that

P



r2 ≤
(

e2q
′

N − 1

e2q
′

N + 1

)2


 = 1 − 2

p(p− 1)
,

approximately. Thus, when all p variables were uncorrelated, only about one of
the all coefficients of determination was greater than ((e2q

′

N − 1)/(e2q
′

N + 1))2.
Moreover, the dissimilarity measure was less than 1 − ((e2q

′

N − 1)/(e2q
′

N + 1))2,
and the corresponding two variables were clustered together due to statistical
fluctuations. That justifies the following choice:

CDM = 1 −
(

e2q
′

N − 1

e2q
′

N + 1

)2

.

Some of the clusters calculated based on the above cutoff dissimilarity mea-
sure may have more variables than n. So, they must be further clustered. More
precisely, in Step 4 of the testing procedure, each cluster having more than MNVC
variables have to be clustered into two sub-clusters. To be consistent with Zhang
and Pan [10] and to see only the effect of our dissimilarity measure, we select
the same MNVC as they, i.e., MNVC = ⌊2n/3⌋, where ⌊x⌋ is the greatest integer
that is less than or equal to x. Such choice might result in cluster dimension dis-
tributed around ⌊n/2⌋, which is shown by Thulin [9] to be the optimal dimension
of subspace giving highest power.

Finally, we establish the invariance property of the new testing procedure.
As we noticed in Section 1, the invariance of a procedure under linear transforma-
tions of the marginal distributions is important in the high-dimensional setting.
Hence, this property should be taken into account when evaluating the testing
procedure along with size control and power. The following result states that
the new test is in fact invariant under such transformations (both samples are
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transformed analogously) similarly to the tests of Srivastava and Du [8], Thulin
[9] and Zhang and Pan [10]. However, the other testing procedures mentioned in
the introduction are not invariant.

Proposition 2. Assume that C is an invertible diagonal real matrix of size p×p
and c ∈ R

p. Conditioned on the random permutations chosen, the new testing

procedure is invariant under linear transformations (X,Y) → (CX+c,CY+c),
where X = (X1, . . . ,Xn1

) and Y = (Y1, . . . ,Yn2
).

Proof. Since the sample correlation coefficients, and hence also coefficients of
determination, are invariant under scaling and shifting transformations as defined
in the proposition, the clustering of variables (Steps 2-4 of the testing procedure)
is also invariant under such transformations. Moreover, the Hotelling’s statistic
is also invariant under these transformations. This finishes the proof.

3. Simulation studies

In this section, we compare the new testing procedure presented in Section 2 and
the test of Zhang and Pan [10], and investigate the randomness of p-values of
the new (permutation) test. The simulations of that paper suggest that their
test is comparable to or even better than the other testing procedures mentioned
in Section 1, so we did not consider them in our simulation studies. Simulation
experiments were performed using the R language (R Core Team [6]), and the
codes are available from the author.

Our simulation experiments were similar to those of Zhang and Pan [10]. The
observations X1, . . . ,Xn1

and Y1, . . . ,Yn2
were generated from the multivariate

normal and t4 distributions of dimension p with mean vectors µ1 = 0p and µ2,
respectively, and covariance matrix Σ = (σij). We considered p = 200, 1000,
n1 = 30, n2 = 40, B = 500 permutation samples, and the following different
covariance matrices:

Σ1: σij = 0.6|i−j|,

Σ2: σij =
[

(−1)⌈i/25⌉0.6
]|i−j| (mod 25)

for ⌈i/25⌉ = ⌈j/25⌉, and σij = 0 for
⌈i/25⌉ 6= ⌈j/25⌉,

Σ3: σii = 1 for i = 1, . . . , p; σij = 0.6 when i 6= j, ⌈i/25⌉ = ⌈j/25⌉, and ⌈i/25⌉
is odd; σij = (0.6)|i−j| (mod 25) when i 6= j, ⌈i/25⌉ = ⌈j/25⌉ and ⌈i/25⌉ is
even; σij = 0 for ⌈i/25⌉ 6= ⌈j/25⌉,

Σ4: σii = 1 for i = 1, . . . , p; σij = 0.6 when i 6= j, ⌈i/25⌉ = ⌈j/25⌉, and ⌈i/25⌉
is odd; σij = (−0.6)|i−j| (mod 25) when i 6= j, ⌈i/25⌉ = ⌈j/25⌉ and ⌈i/25⌉ is
even; σij = 0 for ⌈i/25⌉ 6= ⌈j/25⌉,
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Σ5: σii = 1 for i = 1, . . . , p and σ2k−1,2k = σ2k,2k−1 = 0.6 for k = 1, . . . , p/2,

Σ6: σii = 1 for i = 1, . . . , p, σ2k−1,2k = σ2k,2k−1 = −0.6 for k = 1, . . . , p/4, and
σ2k−1,2k = σ2k,2k−1 = 0.6 for k = p/4 + 1, . . . , p/2.

The matrices Σ5 and Σ6 were inspired by those considered in Feng et al. [5].
Observe that matrices Σ1, Σ3 and Σ5 have only positive non-zero elements, while
the rest of matrices also have some negative ones.

For checking size control of the tests, we consider µ2 = 0p, while for power,
the following two alternatives are chosen: (1) randomly half of components of
µ2 are distributed from N(0, 1) and the others are zeros. Denote this vector by

µ
(1)
2 . (2) the elements of µ2 on positions 2k− 1 (resp. 2k) are equal to one (resp.

zero), k = 1, . . . , p/2. Let µ
(2)
2 denote this vector. These two alternatives were

considered by Feng et al. [5]. Similarly to Feng et al. [4], to make the power

comparable among the configurations of µ2, we set ‖µ1 −µ2‖2
(

tr(Σ2)
)1/2

= 0.1
throughout the simulation. Other alternatives, covariance matrices, sample sizes,
etc. were also considered, but the results were similar, and therefore, they are
omitted for space saving.

The empirical sizes and powers were obtained based on 1000 simulation repli-
cates. The results are depicted in Table 1. In all cases, both tests maintain the
preassigned type I error. Except one case, their empirical sizes belong to the usual
95% significance interval [3.6, 6.4] (see, for example, Smaga [7]). It is also worth
noting that although both testing procedures were constructed under normality
assumption, simulation results indicate the robustness of them to non-normal
distribution under the null hypothesis. This means that the permutation method
approximates the null distribution of the test statistic (1) very satisfactorily.

The empirical powers of the testing procedures are generally quite satisfactory.
When all non-zero correlations are positive (Σ = Σi, i = 1, 3, 5), the empirical
powers of both tests are almost identical. On the other hand, the new test
outperforms significantly the testing procedure of Zhang and Pan [10] in case of
appearing of negative correlation of variables (Σ = Σi, i = 2, 4, 6). These all can
be explained by the fact that the numbers of clusters obtained during performing
both tests are similar when Σ = Σi, i = 1, 3, 5, while these numbers for the new
test are much smaller than for the test of Zhang and Pan [10] when Σ = Σi,
i = 2, 4, 6 (see Table 2 for some examples). So the new testing procedure has the
opportunity to use more information about correlation of variables, and hence it
may be more powerful. Observe also that in most cases the power of the tests
under t4-distribution is comparable to or even better than under normal one,
which can be explained similarly as above.

Finally, we study the randomness of the p-values of the new test estimated
based on different numbers of random permutations B. For this purpose, we
applied 100 times the new testing procedure to a single data set with p = 100,
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Table 1. Empirical sizes (rows with µ2 = 0p) and powers (rows with µ2 = µ
(1)
2 or

µ2 = µ
(2)
2 ), as percentages, of the new testing procedure (“New”) and the test of Zhang

and Pan [10] (“ZP”).

p = 200 p = 1000
Normal t4 Normal t4

Σ µ2 ZP New ZP New ZP New ZP New

Σ1 0p 5.1 4.9 5.5 5.4 4.5 4.8 5.8 5.0

µ
(1)
2 73.6 73.3 78.2 77.7 64.5 63.7 70.4 70.0

µ
(2)
2 74.4 73.8 81.1 80.8 68.9 67.9 67.5 69.5

Σ2 0p 5.2 5.4 4.9 5.5 5.5 5.2 4.9 4.2

µ
(1)
2 43.3 69.0 72.3 84.5 48.5 66.9 53.8 67.8

µ
(2)
2 47.8 70.1 55.7 80.5 48.2 71.0 47.4 69.2

Σ3 0p 5.2 5.0 5.1 4.9 5.5 5.5 5.2 5.3

µ
(1)
2 98.1 98.2 99.8 99.8 99.3 99.3 99.8 99.6

µ
(2)
2 87.7 87.5 96.7 96.8 89.9 90.2 96.1 95.8

Σ4 0p 5.5 5.5 5.1 4.7 5.5 5.3 6.3 6.7

µ
(1)
2 95.4 98.8 99.5 100.0 97.8 99.4 99.2 99.8

µ
(2)
2 68.2 87.2 86.3 96.6 74.1 88.8 85.1 95.7

Σ5 0p 5.2 5.5 5.5 5.8 4.5 5.1 4.9 4.2

µ
(1)
2 60.9 60.1 68.7 67.2 62.6 62.3 54.6 53.9

µ
(2)
2 65.3 64.6 63.6 64.3 61.1 60.0 53.2 55.2

Σ6 0p 4.3 4.2 5.0 4.2 4.0 4.0 5.1 5.5

µ
(1)
2 43.7 63.3 51.5 63.8 43.7 58.9 42.3 52.9

µ
(2)
2 47.2 63.1 46.1 64.3 42.1 59.0 37.8 53.1

Table 2. Numbers of clusters obtained during performing the new testing procedure
(“New”) and the test of Zhang and Pan [10] (“ZP”) for p = 200, µ2 = 0p (For the

alternatives µ
(1)
2 and µ

(2)
2 , the results were very similar.).

Distribution Test Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

Normal ZP 87 125 44 88 101 149
New 91 90 44 47 104 104

t4 ZP 85 118 47 90 104 144
New 85 85 46 53 107 106
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Figure 1. Box-and-whisker plots for the randomness of the p-values of the new test for
a single data set with p = 100, ni = 25, i = 1, 2. For (a) (resp. (b), (c), (d)) the null
(resp. alternative) hypothesis was true and the p-value using B = 100,000 is 0.61316
(resp. 0.06939, 0.01532, 0.00017, respectively). For each B, the testing procedure was
applied 100 times.

ni = 25, i = 1, 2 under the null or alternative hypothesis for different values of B.
The results are depicted on Figure 1. We observe that the variance of the estima-
tor of p-value may be non-negligible for too low B. However, it also depends on
the “proper” p-value. The variance decreases when p-value also decreases, which
is of practical interest, since the accuracy of larger p-values is less important than
the accuracy of small p-values. This observation may also result in reducing the
computational cost of permutation test, which may be time-consuming. Namely,
we can first perform the test using a small number of random permutations (e.g.,
B = 100) to see which decision is expected, and then use a higher B, especially
when the results are inconvincing (e.g., the p-value is close to the nominal level
as in Figure 1 (b)). Similar results were obtained by Thulin [9] for its test based
on random subspaces.

4. Concluding remarks

For a two-sample problem in high dimension, we have proposed the modifica-
tion of the testing procedure of Zhang and Pan [10] using different dissimilarity
measure in clustering variables. Both tests are invariant under linear transforma-
tions of the marginal distributions, but they differ in their finite sample behavior.
The power of the two tests closely mimic each other when the variables are non-
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negatively correlated, but the new test has higher power when some variables
are negatively correlated. We therefore recommend the new test as the default
high-dimensional two-sample test.
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