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Abstract

We consider a complex random polynomials with independent and iden-
tically uniformly distributed random roots on the unit circle. For these
random polynomials we prove some law iterated logarithm type results.
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1. Introduction

Random polynomials arise in many areas of mathematics, e.g. in spectral analy-
sis of random matrices as characteristic polynomials. One of the main questions
about the radom polynomials concerns the asymptotic behavior of roots of ran-
dom polynomials (see e.g. [1, 5, 7, 8] and the references therein). Usually in these
studies, a random polynomial is defined as an algebraic polynomial whose coeffi-
cients form a sequence of random variables (see [1]). However for some problems,
e.g. in the study of the asymptotic behavior of log magnitude of the polynomial,
construction of random polynomial from its roots is a more natural.

Let (nk)k∈N be a sequence of positive numbers and let (zk)k∈N be a sequence
of independent and identically distributed (i.i.d.) complex numbers. Then, above
the pair of sequences determine the sequence of polynomials

(1) PN (z) =
N∏

k=1

(z − zk)nk
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with roots on the unit circle and their corresponding multiplicities. Using the
above definition of random polynomial, and assuming that (zk)k∈N is a sequence of
i.i.d. uniformly distributed unit magnitude complex numbers, Tucci and Whitting
[9] in their considerations studied the asymptotic behavior of the logarithm of
magnitude of random polynomials (1) on the unit circle i.e.,

LN (ϕ) = log
∣∣PN

(
eiϕ
)∣∣2 =

N∑

k=1

nk log (2 (1 − cos (ϕ− θk))) ,

where ϕ ∈ [0, 2π], and θk = arg zk, θk ∈ [0, 2π] are arguments of the roots. Under
some additional conditions, the authors proved a central limit theorem for LN (ϕ).
In the same paper, the authors extended their univariate CLT for LN (ϕ) to the
multivariate case. Furthermore, they showed that the log maximum magnitude of
polynomials (1) converges weakly to strictly positive random variable. Motivated
by the results obtained in [9] and using the same assumptions, we further study
the asymptotic behavior of random polynomials on the unit circle. In this note,
we prove some law of the iterated logarithm type results for the logarithm of
magnitude of random polynomials (1) on the unit circle for the multivariate case.

2. Notation and useful lemmas

In this section we fix the notation and state some lemmas which will be needed
in the subsequent sections. Throughout the note we will denote vectors, random
vectors and matrices by the bold letters a, Y and A. The notations 0 and Is
stand for s × 1 vector of zeros and s × s identity matrix. By ‖·‖ we will denote
the the length of the vector in R

s. As usual, we set lgx = log (max {e, x}) and
lg2 = lg (lgx), and we denote by C1 and C2 generic positive numbers that are not
necessarily the same at each appearance.

In the proofs of the main results the following lemmas will be needed.

Lemma 1 ([3]). Let X1, . . . ,XN ∈ R
s be independent random vectors with zero

mean, and let

Λi = E ‖Xi‖2 , Mi = E ‖X i‖3 , Λ =
1

N

N∑

i=1

Λi, M =
1

N

N∑

i=1

Mi,

and let

SN =
1√
N

N∑

i=1

Xi.
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Then there exist absolute constants K1 and K2 such that for any x > 0

P (‖SN‖ ≥ x) ≤ 4 exp

(
−K1x

2

Λ

)
+ K2

M√
Nx3

,

(e.g. one may take K1 = 1/24 and K2 = 30000).

Lemma 2 ([6], Theorem 3.10). Let X1, . . . ,XN be i.i.d. random vectors in a

separable Banach space F and let SN =
∑N

i=1Xi, then for x > 0

P

(
max
1≤i≤N

‖Si‖ ≥ 6x

)
≤ 4P (‖SN‖ ≥ x) .

Lemma 3 ([6], Corollary 3.11). Let X1, . . . ,XN be i.i.d. random vectors in

separable Banach space F, SN =
∑N

i=1 Xi and let 0 ≤ ai ≤ 1, then for x > 0

P

(∥∥∥∥∥

N∑

i=1

aiXi

∥∥∥∥∥ ≥ 6x

)
≤ 4P (‖SN‖ ≥ x) .

Throughout the note, in Lemmas 2 and 3, we will assume that F = R
s.

3. Main results

Let [ϕ1, . . . , ϕs]
′ be a vector of s distinct numbers on the interval [0, 2π) and let

Y k = [Yk1, . . . , Yks]
′ ,

where Yki = log (2 (1 − cos (ϕi − θk))), i = 1, . . . , s be the corresponding random
vector. As in [9], we assume that Yki are identically distributed according to
Y = log (2 (1 − cos (2πU))), where U is a uniform random variable on [0, 1] and
E (Y ) = 0 and V ar (Y ) = σ2 ≈ 3.292. Further, we assume that for a given i,
i = 1, . . . , s, that (Yki)k∈N are independent. Finally, let sN =

∑N
k=1 n

2
k.

In [9], it was pointed out that (Y k)k∈N is a sequence of i.i.d. random vectors
with mean vector 0 and covariance matrix Σ (s × s) determined by

Σml = K (|ϕm − ϕl|) ,

where

K (ϕ) =
1

2π

∫ 2π

0
log (2 (1 − cos (θ))) log (2 (1 − cos (ϕ + θ))) dθ.
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Theorem 4. Let [ϕ1, . . . , ϕs]
′

be a vector of distinct numbers on the interval

[0, 2π) and let (Y k)k∈N be a corresponding sequence of i.i.d. random vectors with

EY 1 = 0 and EY 2
1i = σ2, for i = 1, . . . , s. Then

lim sup
N→∞

∥∥∥
∑N

k=1
nk

max1≤k≤N nk
Y k

∥∥∥
√

sN lg2sN
≤ 6

√
24sσ2 a.s.

We prepare the proof of Theorem 4 with the following lemma.

Lemma 5. Under the assumptions of Theorem 4 for a fixed s we have

(i) Λ = 1
N

∑N
k=1E ‖Y k‖2 = σ2s,

(ii) M = 1
N

∑N
k=1E ‖Y k‖3 ≤ s3/2

(
EY 4

)3/4
< ∞.

Proof. (i) The proof of (i) follows from the assumptions and the definition of
‖·‖.

(ii) Since, Y i, i = 1, . . . , N , are i.i.d., thus we have that M = E ‖Y 1‖3.
Hence, to prove (ii) it suffices to how that E ‖Y 1‖3 ≤ s3/2

(
EY 4

)3/4
< ∞.

Now, since Y
′
1Y 1 is nonnegative random variable, thus applying the Lya-

punov inequality (see [2], p. 643) and the partial moment inequality with p = 2
(see [2], p. 650) we get

E ‖Y 1‖3 = E
(
Y

′
1Y 1

)3/2 ≤
(
E
(
Y

′
1Y 1

)2)3/4
=


E

(
s∑

i=1

Y 2
1i

)2



3/4

≤ s3/4

(
s∑

i=1

EY 4
1i

)3/4

= s3/2
(
EY 4

)3/4
< ∞,

since Y1i, i = 1, . . . , s, are identically distributed according to Y , and EY 4 < ∞
(≈ 123.3848) and s ≥ 1 is fixed. This completes the proof.

Proof of Theorem 4. Let us denote by χ (N) =
√

sN lg2sN , N = 1, 2, 3, . . . ,
ak = nk

max1≤k≤N nk
, k = 1, . . . , N and

LN = LN (ϕ1, . . . , ϕs) =

N∑

k=1

akY k.

In order to prove the theorem we show that for arbitrary small ε > 0 with
probability 1 only finitely many events

‖LN‖ > 6
√

24sσ2 (1 + ε)χ (N)

occur.
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Now, by the definition of sN it follows that

(2) sN → ∞, and
sN+1

sN
→ 1 as N → ∞.

Hence, it follows from (2) that for every τ there exist a nondecreasing sequence
of integers Nk such that Nk → ∞ as k → ∞ and that

(3) sNk−1 ≤ (1 + τ)k < sNk
.

Further, by (2) one can conclude that

(4) sNk
∼ (1 + τ)k .

and in view of (2) and (3) one gets that χ(Nk)/χ(Nk−1) < (1 + 2τ).
Let {Y Nk

, k ∈ N} be a subsequence of {Y N , N ∈ N}. Applying Lemma 3 we
have that

P
(
‖LNk

‖ ≥ 6
√

24sσ2 (1 + ε)χ (Nk)
)

≤ 4P

(∥∥∥∥∥

Nk∑

i=1

Y i

∥∥∥∥∥ ≥
√

24sσ2 (1 + ε)χ (Nk)

)

= 4P

(∥∥∥∥∥
1√
Nk

Nk∑

i=1

Y i

∥∥∥∥∥ ≥
√

24sσ2 (1 + ε)
χ (Nk)√

Nk

)
.

Now, applying Lemma 1 with K1 = 1/24 and K2 = 30000, and Lemma 5 we get
that

(5)

P
(
‖LNk

‖ ≥ 6
√

24sσ2 (1 + ε)χ (Nk)
)

≤ 4 exp

(
−(1 + ε)2 24sσ2sNk

lg2sNk

24ΛNk

)
+

C2 (Nk)3/2

√
Nk (sNk

lg2sNk
)3/2

≤ 4 exp

(
−(1 + ε)2 sNk

lg2sNk

Nk

)
+

C2Nk

(sNk
lg2sNk

)3/2

≤ 4 exp
(
− (1 + ε)2 lg2sNk

)
+

C2

(sNk
)1/2

,

since, for sufficiently large k, sNk
≥ Nk and lg2sNk

≥ 1. Hence by (4), we obtain
in (5) that

P
(
‖LNk

‖ ≥ 6
√

24sσ2 (1 + ε)χ (Nk)
)
≤ C1

k(1+ε)2
+

C2(√
1 + τ

)k .
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Thus, the series
∑∞

k=1 P
(
‖LNk

‖ ≥ 6
√

24sσ2 (1 + ε)χ (Nk)
)

is convergent for ev-

ery ε > 0 and according to Borel-Cantelli lemma

lim sup
k→∞

‖LNk
‖√

sNk
lg2sNk

≤ 6
√

24sσ2 a.s.

Now, let ε be an arbitrary, positive number. Further, let γ < ε be another positive
constant. Finally, let the positive constant τ be such that (1 + ε) (1 + 2τ)−1/2 >
1 + γ. In order to prove that the whole sequence behaves properly, let us denote
by Ak (ε) the event

max
Nk≤j≤Nk+1

‖Lj‖ ≥ 6 (1 + ε)
√

24sσ2χ (Nk) .

By the Borel-Cantelli lemma, with probability 1, at most finitely many of the
events Ak (ε) will occur, once we show that

∞∑

k=1

P (Ak (ε)) < ∞

for arbitrarily small ε > 0.

Since, χ(Nk) > (1 + 2τ)−1/2 χ (Nk+1), we have

P (Ak (ε)) ≤ P

(
max

1≤j≤Nk+1

‖Lj‖ ≥ 6 (1 + ε)
√

24sσ2χ (Nk)

)

≤ P


 max

1≤j≤Nk+1

∥∥∥∥∥∥
max1≤j≤Nk+1

ni

max1≤j≤Nk+1
ni

i∑

j=1

Y j

∥∥∥∥∥∥
≥ 6 (1 + ε)

√
24sσ2χ (Nk)




≤ P


 max

1≤i≤Nk+1

∥∥∥∥∥∥

i∑

j=1

Y j

∥∥∥∥∥∥
≥ 6 (1 + ε) (1 + 2τ)−1/2

√
24sσ2χ (Nk+1)




≤ P


 max

1≤i≤Nk+1

∥∥∥∥∥∥

i∑

j=1

Y j

∥∥∥∥∥∥
≥ 6 (1 + γ)

√
24sσ2χ (Nk+1)


 .(6)

For sufficiently large k, sNk+1
≥ Nk+1 and lg2sNk+1

≥ 1. By Lemmas 2, 1 and 5
we obtain in (6) that
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P (Ak (ε)) ≤ 4P




∥∥∥∥∥∥

Nk+1∑

i=1

Y i

∥∥∥∥∥∥
≥ (1 + γ)

√
24sσ2χ (Nk+1)




= C1P




∥∥∥∥∥∥
1√
Nk+1

Nk+1∑

i=1

Y i

∥∥∥∥∥∥
≥ (1 + γ)

√
24sσ2

χ (Nk+1)√
Nk+1




≤ C1 exp

(
−(1 + γ)2 sNk+1

lg2sNk+1√
Nk+1

)
+ C2

(Nk+1)
3/2

√
Nk+1

(
sNk+1

lg2sNk+1

)3/2

≤ C1

k(1+γ)2
+

C2(√
1 + τ

)k ,

Thus, the series
∑∞

k=1 P (Ak (ε)) is convergent for every ε > 0 and according
to the Borel–Cantelli lemma,

lim sup
N→∞

‖LN‖√
sN lg2sN

≤ 6
√

24sσ2 a.s.

This completes the proof.

Now, let us assume that nk = 1 for k = 1, 2, . . . , N . Then sN = N and by
Theorem 4 we get the following corollary.

Corollary 6. Let [ϕ1, . . . , ϕs]
′

be a vector of distinct numbers on the interval

[0, 2π). Then, under the assumptions of Theorem 4

lim sup
N→∞

∥∥∥
∑N

k=1 Y k

∥∥∥
√

N lg2N
≤ 6

√
24sσ2 a.s.

In case when nk = 1, for k = 1, 2, . . . , N , we can characterize the a.s. limit

set for the sequence
(∑N

k=1 Yk

)
/
√

2N lg2N .

Theorem 7. Let [ϕ1, . . . , ϕs]
′

be a vector of s distinct numbers on the interval

[0, 2π) and (Y k)k∈N be a corresponding sequence of i.i.d. random vectors with

EY 1 = 0 and E (Y 1Y
′
1) = Σ > 0. Let

L̃N = L̃N (ϕ1, ϕ2, . . . , ϕs) =

∑N
k=1 Yk√

2N lg2N
.

Then, the a.s. limit set of (L̃N ) is

K =
{
Σa : a′Σa ≤ 1

}
=
{
Σ1/2

w : ‖w‖ ≤ 1
}
.
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Proof. By the assumptions and by the Cholesky decomposition we have that
Σ1/2 and its inverse exist. Further, one can find matrices A and B such that
Z = AY 1 is random vector with mean 0 and covariance matrix Is, and that
Y 1 = BZ a.s. Thus, it follows that K = BKZ = BB (0, 1), and L̃N = BTN

a.s., where

TN =

N∑

k=1

AY k.

Let A = Σ−1/2 and B = Σ1/2. Then, by the generalized law of the iterated
logarithm [4, Lemma 2] it follows that (TN ) is relatively compact and the set of
its limit points is B(0, 1), and

C (LN ) = BC

(
TN√

2N lg2N

)
= BKZ = K.

This completes the proof.
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