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Abstract

The problem of the nonnegative estimation of the parametric function
γ(β, σ) = β′Hβ + hσ2 in the linear regression model M{y,Xβ, σ2I}, where
H is a nonnegative definite matrix and h is a nonnegative scalar, attracted
attention of many researchers. S. Gnot, G. Trenkler and R. Zmyślony [J.
Multivar. Anal. 54 (1995), 113–125] proposed an approach in which γ is
estimated by a quadratic form y′Ay, where A is a nonnegative definite matrix
that satisfies an appropriate optimality criterion associated with minimizing
the bias of the estimator.

In the paper, we revisit this approach to estimating γ. In particular, we
discuss various methods of computing the matrix A, which in the general
case is not given explicitly.
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1. Introduction

Let us consider the linear regression model M{y,Xβ, σ2In}, where y is an n-
dimensional normally distributed random vector with

E(y) = Xβ, Cov(y) = σ2In,
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X is a known n× p matrix of rank p, 0 < p < n, β is an unknown p-dimensional
vector of fixed parameters and In stands for the identity matrix of order n.

For a given nonnegative definite p × p matrix H and a given nonnegative
scalar h we are interested in estimation of the following parametric function

(1) γ(β, σ) = β′Hβ + hσ2.

The importance of the problem of estimating γ stems from the fact that the total
mean squared error of a linear estimator Ly of a parametric function Kβ is of the
form (1):

TMSE(Ly;Kβ) = E[(LXβ + Lǫ−Kβ)′(LXβ + Lǫ−Kβ)](2)

= E[((LX −K)β + Lǫ)′((LX −K)β + Lǫ)](3)

= β′H0β + h0σ
2,(4)

where H0 = (LX − K)′(LX − K) and h0 = trLL′. Using estimators of (2) for
comparing biased estimators of the parameter vector β is discussed in [9] while
the applications to the problem of variable selection are discussed in [16, Chapter
11] and [8].

The problem of estimating γ when H is the identity matrix of order p and
h = 0 was considered by Brook and Moore [6]. They have shown that the squared
length of the least squares coefficient vector is positively biased. This indicates
that there is a need to consider alternative approaches for estimating γ(β, σ) =
β′β.

Let us note that the so called naive estimator of γ given by

(5) β̂′Hβ̂ + hσ̂2,

where

(6) β̂ = (X ′X)−1X ′y and σ̂2 = y′My/(n − p)

with M = In − X(X ′X)−1X ′, has bias σ2 tr{H(X ′X)−1}. On the other hand,
the estimator

(7) β̂′Hβ̂ + σ̂2
[

h− tr{H(X ′X)−1}
]

is unbiased for γ and has uniform minimum variance as a function of the minimal
sufficient and complete statistics β̂ and σ̂2. Let us observe that the estimator (7)
is nonnegative if and only if h ≥ tr{H(X ′X)−1}. Thus if h < tr{H(X ′X)−1}, the
problem arises: how to estimate γ by a quadratic estimator y′Ay with nonnegative
definite A; compare [10, p. 114].
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1.1. Notation

For a given positive integer k we will denote by R
k, S

k, S
k
+ and S

k
++ the k-

dimensional Euclidean vector space, the Euclidean space of symmetric matrices of
order k, the convex cone of symmetric nonnegative definite matrices of order k and
the convex cone of symmetric positive definite matrices of order k, respectively.

For A ∈ S
k we will denote its positive part by A+ and its negative part by

A−. Let us recall that these matrices can be defined by

A+ =
k

∑

i=1

max(ai, 0)uiu
′

i, A− = −
k

∑

i=1

min(ai, 0)uiu
′

i,

where a1, a2, . . . , ak are the eigenvalues of A and u1, . . . , uk are the corresponding
orthonormal eigenvectors.

2. Minimum biased quadratic estimation of γ

Gnot, Trenkler and Zmyślony [10, p. 115] have defined the nonnegative minimum
biased estimator of γ as the unique solution of a certain convex optimization
problem.

Definition 1 [10]. The nonnegative minimum biased estimator of the parametric
function γ is given by

(8) β̂′CH β̂ + cH σ̂2,

where the pair < CH , cH > is the unique solution of the optimization problem

minimize tr
{

(H − C)2
}

+
[

tr
{

C(X ′X)−1
}

+ c− h
]2

(9)

subject to C ∈ S
p
+ and c ≥ 0.(10)

Let us note that if h ≥ tr{H(X ′X)−1} then CH = H, cH = h−tr{H(X ′X)−1}
and (8) is the uniformly minimum variance unbiased estimator of γ. It can be
shown that if h < tr{H(X ′X)−1} then cH = 0 and

CH =
[

H − λ(X ′X)−1
]

+
,

where λ is the unique root of the equation f(x) = 0 with f defined by

(11) f(λ) = tr
{

[

H − λ(X ′X)−1
]

+
(X ′X)−1

}

− h− λ,

compare [8, p. 68] and [10, p. 119]. The properties of the function f are given in
the following lemma.
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Lemma 2. (a) The function f : R 7→ R is continuous and strictly decreasing.

(b) If h < tr{H(X ′X)−1} then f(0) > 0 and f
(

tr{H(X ′X)−1}
)

< 0.

Proof. The continuity of f is a consequence of the fact that the orthogonal
projection of A ∈ S

n onto the convex cone S
n
+ is equal to A+; compare [14,

Theorem 2.1] and [12, Proposition 3.1.3]. Its strictly decreasing monotonicity
follows from the fact that the function

R ∋ δ 7→ tr
{

[

H − δ(X ′X)−1
]

−
(X ′X)−1

}

is nondecreasing; compare [10, Lemma 2.2]. The last inequality in the part (b)
also follows from it. This completes the proof.

The above lemma suggests using the bisection method, the Brent’s method
[5, Chapter 4] or the Ridders’ method [15, 146–150] for finding the unique root of
the function f . The implementations of these methods can be found e.g. in the
R package pracma [4].

The unique root of f can be also found using the following result due to Gnot,
Trenkler and Zmyślony [10].

Theorem 3 ([10], Theorem 2.2). Let us assume that h < tr{H(X ′X)−1} and let

the sequence (δn) be defined by

δ0 = [tr{H(X ′X)−1} − h]/τ,(12)

δn = [tr{[H − δn−1(X
′X)−1]−(X

′X)−1}]/τ + δ0, n = 1, 2, . . . ,(13)

where τ = 1 + tr{(X ′X)−2}. Then (δn) converges to the unique root of f .

Gnot, Trenkler and Zmyślony [10] have proved that in the case when HX ′X =
X ′XH the function f is piecewise linear and the unique root of the function f
can be expressed in an explicit form.

Theorem 4 ([10], Theorem 2.1). If HX ′X = X ′XH and h < tr{H(X ′X)−1},
then there exist x1, . . . , xq such that 0 < x1 < x2 < · · · < xq < tr{H(X ′X)−1}
and the restriction of f to [xi, xi+1], i = 1, . . . , q, with x0 = 0 and xq+1 =
tr{H(X ′X)−1}, is an affine function.

Proof. There exists an orthogonal matrix (P = [v1| · · · |vp]) of order p such that

X ′X = P diag(λ1, . . . , λp)P
′ =

p
∑

i=1

λiviv
′

i,

H =P diag(η1, . . . , ηp)P
′ =

p
∑

i=1

ηiviv
′

i,
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where λ1, . . . , λp and η1, . . . , ηp are the eigenvalues of X ′X and H, respectively,
satisfying the condition

(14) λ1η1 ≥ λ2η2 ≥ · · · ≥ λpηp.

Let ξ1 < ξ2 · · · < ξs, s ≤ p, be an ordered sequence consisting of all distinct
elements of the set {λ1η1, λ2η2, . . . , λpηp}. It can be seen that q = s and xi = ξi,
i = 1, 2, . . . , q, satisfy the desired conditions.

Remark 5. If HX ′X = X ′XH and h < tr{H(X ′X)−1}, then the unique root
of f is given by

tm =

∑m
i=1

ηi/λi − h

1 +
∑m

i=1
1/λ2

i

,

where m is the largest positive integer not exceeding p such that

ηm −
tm
λm

> 0;

compare [10, pp. 116–117] and [17, p. 31].

Let us also recall that if h < trH(X ′X)−1 and the matrices H and X ′X
commute, the nonnegative minimum biased estimator of γ is admissible in the
class of all nonnegative quadratic estimators with respect to the mean squared
error risk function. This result is also due to Gnot, Trenkler and Zmyślony;
compare [10, Theorem 3.1].

3. Future research issues

The problem of finding the unique root of the function f defined by (11) is chal-
lenging when the matrices H and X ′X do not commute. In this case it is necessary
to use the iterative procedure described in Theorem 3 or to apply a root-finding
procedure such as the bisection method. In both cases one has to compute the ap-
propriate eigenvectors and eigenvalues the matrix H−λ(X ′X)−1 so as to compute
[H − λ(X ′X)−1]+ in each iteration step.

In [8] and [11] the modified regula falsi (also known as the Illinois method,
compare [13, p. 95]) was used for finding the approximate value of the unique
root of f . This method, known to be "extraordinarily effective" in many practical
situations, proved to be good also in this case.

Professor Roman Zmyślony proposed the following conjecture concerning the
function f .

Conjecture 6. The function f defined by (11) is convex.
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Remark 7. It is easy to show that the function f is convex if HX ′X = X ′XH.
Attempts to prove or disprove this conjecture when this condition is not satisfied
were not successful so far to the best knowledge of the author.

Remark 8. The conjectured convexity of f would suggest using the Ridders’
method [15, pp. 146–150] for finding the unique root of f in the case when
HX ′X 6= X ′XH.

To compute the nonnegative minimum biased estimator of γ we can also
use the fact that the problem (9)–(10) belongs to the class of convex nonlinear
semidefinite programs [18] and to the class of cone quadratic programs [1]. The
mentioned programs can be solved using such packages as CVXOPT [2] or PEN-
LAB [7]. This approach can be used for finding the solution of a counterpart of
the optimization problem (9)–(10) in which the discrepancy function has a more
general form: for given D ∈ S

p
+ and d > 0

minimize tr[(H − C)D]2 + d
[

tr
{

C(X ′X)−1
}

+ c− h
]2

(15)

subject to C ∈ S
p
+ and c ≥ 0.(16)

Let us also note that the problem of minimizing the Bayesian risk of a
quadratic estimator of γ having the form β̂′Gβ̂ + gσ̂2 with given G ∈ S

p
+ and

g ≥ 0 considered in [3, p. 189] can also be formulated as a cone quadratic pro-
gram or a convex nonlinear semidefinite program.

The strategies for variable selection in the linear regression model basing on
nonnegative minimum biased estimation of the parametric function γ appear to
be very promising; compare [8, 11]. It may be thus expected that the approaches
to estimating γ proposed by Professor Roman Zmyślony and his co-workers will
find many applications in statistics and data science.
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