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e-mail: saliou.diouf@ugb.edu.sn
aliou.diop@ugb.edu.sn
eltinoyaw@yahoo.fr

Abstract

We consider a class of nonstationary time series defined by Yt = µt +Xt

and Xt =
∑

∞

k=0
Ct,kσt−kηt−k where {ηt; t ∈ Z} is a sequence of independent

and identically random variables with regularly varying tail probabilities, σt

is a scale parameter and {Ct,k, t ∈ Z, k > 0} an infinite array of random
variables. In this article, we establish convergence of the normalized partial
sum of Xt, and we deal with the asymptotic distribution for the normalized
maximum. We also investigate, by Monte Carlo simulation, the goodness-
of-fit of the limiting distribution.
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1. Introduction

In this article, we consider a class of nonstationary time series with the form.

Yt = µt +Xt, Xt =
∞∑

k=0

Ct,kηt−kσt−k(1)
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where {Ct,k, t ∈ Z; k ≥ 0} is an infinite array of positive random variables and
{ηt;−∞ < t < ∞} a sequence of independent and identically distributed ran-
dom variables with regularly varying tail probabilities. Extreme value theory
of nonstationary processes has been the purpose of investigations under certain
conditions. Husler (1986) extended some results of the extreme-value theory of
stationary random sequences to non-stationary random sequences.

Niu (1997) studied the limit theory for extreme values of a class of nonsta-
tionary time series with the following form

Yt = µt +Xt, Xt =
∞∑

k=0

ckηt−kσt−k,(2)

where (ck) is a sequence of real constants. In recent years, Kulik (2006) investi-
gated the limit theory for moving average

Xt =

∞∑

k=0

Ct,kZt−k,(3)

where {Ct,k, t ∈ Z; k ≥ 0} is an infinite array of positive random variables.

In our purpose, we extend these two models (2) and (3) and consider non-
stationary moving average process with random coefficients defined in (1).

This model is used very often in the field of environment, meteorology, hydrol-
ogy, as it is able to successfully model phenomena such as extreme temperature,
floods, storms and extreme ozone concentrations (see Coles [4], Eastoe and Tawn
[10]).

We may give an example of model (1) for, say, ground-level ozone data {Xt}
defined by the following relation

Xt =

{
φ1Xt−1 + σ1tη

(1)
t , if Yt−δ > τ,

φ2Xt−1 + σ2tη
(2)
t , if Yt−δ ≤ τ,

(4)

where τ and φi are non random constants and with threshold variable Yt−δ.

Here (η
(1)
t )t∈Z and (η

(2)
t )t∈Z are sequences of iid random variables with regularly

varying tail probabilities, and φ1, φ2 are constants parameters. We also assume

that (η
(1)
t )t∈Z and (η

(2)
t )t∈Z are independent as random sequences.

The ground level ozone process has piecewise linear structure. It switches
between two first order autoregressive process according to meteorological condi-
tions, including daily temperature, relative humidity, wind speed and direction,
which play an important role in determining the severity of ozone concentration.

In hydrology framework where the water level Xt is observed at a given
location, Yt−δ could be interpreted as threshold level upstream from that location
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and δ the delay (in terms of days, hours, for instance) for the raw wave to reach
that location.

When we define I1t = I{Yt−δ>τ}, I2t = 1 − I1t, the model (4) can be written
as

Xt = φ(t)Xt−1 + Zt(5)

where

φ(t) = φ1I1t + φ2I2t and Zt = σ1tη
(1)
t I1t + σ2tη

(2)
t I2t.

The equation (5) is a stochastic difference equation where the pairs (φ(t), Zt)t
are sequences of independent and not identically distributed R

2-valued random
variables. Its solution can be written as

Xt =

∞∑

j=0

(
j−1∏

k=0

φ(t−k)

)
Zt−j .(6)

The rest of this paper is organized as follows. Section 2 contains background
results and tools. In Section 3, we establish the asymptotic behavior of the
partial sums. In Section 4, we establish the asymptotic behavior of the partial
maxima. In Section 5, we propose to estimate the parameters of the model (4).
In Section 6, we investigate, by Monte Carlo simulation, the goodness-of-fit of
the limiting distribution of the normalized extremes.

2. Background results and tools

2.1. Point process

Let E be a state space taken to be a subset of compactified Euclidean space (such
as Rd = [−∞; +∞]d). Let E be the Borel σ-algebra generated by open sets. For
x ∈ E and A ∈ E , define the measure εx on E by

εx(A) =

{
1, x ∈ A,
0, x /∈ A.

(7)

Let {xi, i ≥ 1} be a countable collection of (not necessarily distinct) point of
the space E. A point measure mp is defined to be a finite measure on relatively
compact subsets of E of the form mp =

∑∞
i=1 εxi

which is nonnegative integer-
valued. The class of point measures is denoted by Mp(E) and Mp(E) is the
smallest σ-algebra making the evaluation maps m → m(F ) measurable where
m ∈ Mp(E) and F ∈ E .

Let C+
K be the set of all continuous, non-negative functions on the state

E with compact support. If Nn ∈ Mp(E) then Nn converges vaguely to N
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(Nn ⇒ N) if Nn(f) converges to N(f) for every f ∈ C+
K , where N(f) =

∫
fdN .

A Poisson process on (E, E) with mean measure µ is a point process N such that,
for every A ∈ E , N(A) is a Poisson random variable with mean measure µ(A). A
Poisson process or a Poisson random measure with mean measure µ is denoted
by PRM(µ).

2.2. Assumptions and preliminary results

Under the following assumptions, Diop and Diouf ([9]) established the limit the-
orem for point processes based on the nonstationary time series (1).

We suppose that the absolute value of each weight Ct,k has an upper endpoint
ck defined by

ck = sup{c : P(|Ct,k| ≤ c) < 1}, k = 1, 2, . . . .(8)

We will use the following assumptions:

H1− The sequence of random variables {ηt, t ∈ Z} is a sequence of indepen-
dent, identically distributed (iid) random variables and satisfies the condition of
regularly varying tail probabilities with index −α

P(|η1| > x) ∼ x−αL(x), x → ∞,(9)

where α > 0 and L is a slowly varying function at infinity that is limt→∞
L(tx)
L(t) = 1,

∀x > 0 and tail balancing condition,

lim
x→∞

P(η1 > x)

P(|η1| > x)
= π0, lim

x→∞

P(η1 < −x)

P(|η1| > x)
= 1− π0.(10)

where 0 < π0 ≤ 1. Let an be the 1− n−1 quantile of |η1|:

an = inf
{
x : P(|η1| ≤ x) ≥ 1− n−1

}
.(11)

The condition of regularly varying tail probabilities satisfied by the sequence of
random variables {ηt, t ∈ Z} is equivalent to this vague convergence

nP(a−1
n η1 ∈ ·) → ν(·),(12)

where ν has density

ν(dx) = απ0x
−α−1dxI(0, ∞](x) + α(1 − π0)(−x)−α−1dxI[−∞, 0)(x).

H2− The array {Ct,k, t ∈ Z, k ≥ 0} is independent of {ηt, t ∈ Z}.

H3− For each fixed m, the sequence {(Ct,0, . . . , Ct,m), t ∈ Z} is strongly mixing.
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H4− For some δ > 0,
∑∞

k=1 c
1−δ
k < ∞,

∑∞
k=1 σ

α
k c

δα
k < ∞.

We assume that there exist M > 0 and
∑∞

k=1 E | σt−kC1,k |α< M .

Furthermore we assume that for fixed k ≥ 0,

1

n

n∑

j=1

σα
j−k → γαk , as n → ∞,(13)

where γk > 0, for all k ≥ 0.

Now assume that the R
∞-valued random elements Ct = {Ct,k, k ≥ 0} form

the stationary sequence {Ct, t ≥ 1}. Assume the R
∞-valued random elements

Vt = (Vt,0, Vt,1, . . .), t ∈ Z has the same distribution as C0.

Diop and Diouf ([9]) established the following theorem, which discusses the
weak convergence of the sequence of point processes based on (a−1

n Xk)k∈N to a
function of a PRM.

Theorem 1. Suppose that the non stationary sequence (Xt) is given by (1).
Assume that the conditions H1–H4 hold. Then, in the space Mp([−∞,∞] \ {0}),

Nn =
n∑

t=1

εa−1
n Xt

⇒ N =
∞∑

t=1

∞∑

k=1

εjtVt,k
,(14)

where
∑∞

t=1 εjt is a PRM with density

µ(dx) = γα0
(
π0αx

−α−1dxI(0,∞](x) + (1− π0)α(−x)−α−1dxI[−∞, 0)(x)
)
.

The asymptotic tail behavior for Xt defined by (6) are given by the following
theorem (see [8]).

Theorem 2. Suppose that the conditions H1–H3 hold, then the tail behavior

distribution of Xt defined in (1) is:

lim
x→∞

P (|
∑∞

k=1Ct,kσt−kηt−k |> x)

P(| η1 |> x)
=

∞∑

k=1

E | σt−kC1,k |α .(15)

3. Asymptotic behavior of the partial sums

In the case 0 < α < 1, we establish convergence of the partial sums Sn =∑n
t=1 a

−1
n Xt, where {Xt} is given by (1).
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Theorem 3. Assume that 0 < α < 1, under assumptions of Theorem 1 we have

Sn =

n∑

t=1

a−1
n Xt →

d S =

∞∑

t=1

∞∑

k=1

jtVt,k as n → ∞(16)

here →d denotes convergence in distribution.

Proof. Using the same arguments as in the proof of Theorem 3.1 in [5]. For any
Borel set B in R we define

SnB =

n∑

t=1

a−1
n XtIB(a

−1
n | Xt |)

and

SB =

∞∑

t=1

∞∑

k=1

jtVt,kIB(| jtVt,k |).

For every ε > 0, we define this continuous function

T : Mp(R) → R

∞∑

t=1

εxt 7→
∞∑

t=1

xtI(ε,∞)(| xt |).

Applying the continuous mapping theorem to Nn and Theorem 1, we obtain:

Sn(ε,∞) = T (Nn)

→d T (N) = S(ε,∞)

Using the same arguments as in the proof of Theorem 3.1 in [5], it follows that

S(ε,∞) → S(0,∞) =

∞∑

t=1

∞∑

k=1

jtVt,k, as ε → 0.

To prove (16), we only have to show now that Sn(0, ε) →
P 0. In fact, by Theorem

2 we have that | Xt | are random variables with regularly varying tail probabilities,
therefore we can use the Theorem 2 of [11] (page 275) and get the following
equivalence uniformly in t

E
(
| Xt | I(0,anε)(| Xt |)

)
∼

α

1− α
anεP (| Xt |> anε) .(17)

Let β > 0, by Markov’s inequality and (17), we have,

P(| Sn(0, ε) | > β) ≤ β−1
E

∣∣∣∣
n∑

t=1

a−1
n XtI(0,ε)(| a

−1
n Xt |)

∣∣∣∣
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≤ β−1a−1
n

n∑

t=1

E
(
| Xt | I(0,ε)(| a

−1
n Xt |)

)

∼
α

1− α
β−1ε

n∑

t=1

P(| Xt |> anε)

∼
α

1− α
β−1ε

n∑

t=1

P(a−1
n | η1 |> ε)

∞∑

k=1

E | σ1−kC1,k |α

≤
α

1− α
β−1εnP(a−1

n | η1 |> ε)M

→
α

1− α
β−1Mε1−α as n → ∞ → 0 as n → 0.

Then

lim
ε→0

lim sup
n→∞

P(| Sn(0, ε) |> β) = 0.

By Theorem 4.2 of [2], we have

Sn(0,∞) = a−1
n Sn →d

∞∑

t=1

∞∑

k=1

jtVt,k.

4. Asymptotic behavior of the partial maxima

Let Mn = max{X1, . . . ,Xn}, where the processes (Xt)t is defined by (1). In this
section we present the main result concerning the asymptotic distribution for the
suitably (Mn)n correctly normalized.

Theorem 4. Let (Xt)t be the process defined by the equation (1). Assume that

the conditions H1–H4 hold. Then for all x > 0, as n → ∞

P(a−1
n Mn ≤ x) → exp

{
−
[
γα0 π0E(V

+)α + γα0 (1− π0)E(V
−)α

]
x−α

}
,(18)

with

V + = max
k

Vt,kI{Vt,k>0} and V − = max
k

Vt,kI{Vt,k<0}.

Proof. Using the definition of Nn, we note that {a−1
n Mn ≤ x} is equivalent to

(Nn(x,∞] = 0). Applying the continuous mapping theorem to the next function

T : Mp([0,∞) × R \ {0}) → D(0,∞)
∞∑

k=1

ε(tk ,jk) 7→ sup{jk, tk ≤ ·}
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where D(0,∞) is the Skorokhod space of cadlag functions on (0,∞) and using
Theorem 1, we obtain

P(a−1
n Mn ≤ x) = P(Nn(x,∞] = 0) → P(N(x,∞] = 0).

Note that the event {N(x,∞] = 0} is equivalent to none of the points of the set
{jtVt,k, k ≥ 1, t ≥ 1} exceeding x, what is still equivalent to

∞⋂

t=1

{
jt

∞∨

k=1

Vt,k ≤ x

}
.

Since {jt
∨∞

k=1 Vt,k, t ≥ 1} are the points of PRM on R \ {0} of mean measure

µ(x) =
(
γα0 π0E(V

+)α + γα0 (1− π0)E(V
−)α

)
x−α.

This set corresponds to

{
max(jtV

+,−jtV
−) ≤ x

}
.

Then

P(a−1
n Mn ≤ x) → exp

{
−
(
γα0 π0E(V

+)α + γα0 (1− π0)E(V
−)α

)
x−α

}
.

5. Estimation Methods

5.1. Estimation of the parameters of the model

In this section, we consider the following threshold autoregressive model for (Xt):

Xt =

{
φ1Xt−1 + σtηt, if Yt−δ ≤ τ,

φ2Xt−1 + σtηt, if Yt−δ > τ,
(19)

where {ηt} are sequences of iid random variables with regularly varying tail prop-
babilities, τ and φi are non random constants and with threshold variable Yt−δ.
Specifically, we assume in the sequel that

P{|η1| > x} = 1− exp(−x−α), α > 0.(20)

The scale parameter σt is modeled as a nonlinear function of covariables of
the form

σt = exp

{
a0 +

m∑

j=1

ajxtj

}
.(21)
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We propose to estimate the parameters of the model (19)–(21) assuming that δ
and τ are known parameters. The parameters are estimated by the Maximum
Likelihood Estimation method. We choose this method for its simplicity and its
good asymptotic properties. Other estimation methods can be considered. In the
introduction we showed that the model (19) can be rewritten under this relation:

Xt − φ(t)Xt−1 = σtηt.(22)

Let

φ = (φ1, φ2), a = (a0, . . . , am), θ = (α, φ, a),X = (X1, . . . ,Xn), Y = (Y1, . . . , Yn).

The likelihood function for the model (19) is given by

L(θ,X|Y ) = p(X)L∗(θ,X|Y )

where L∗(θ,X|Y ) is the conditional likelihood function and p(X) is the joint
density of n variables (X1, . . . ,Xn). The conditional likelihood function is then
given by

L∗(θ,X|Y ) = αn−1
∏n

t=2

[∣∣Xt − φ(t)Xt−1

∣∣−α−1
σα
t

]

× exp

{
−

n∑

t=2

(
Xt − φ(t)Xt−1

σt

)−α
}
.

The parameter θ can be estimated by maximizing the conditional log-likelihood:

θ̂ = argmax
θ

logL∗(θ,X|Y ).

5.2. Estimation of the tail balancing coefficients

The coefficient π0, in the tail balancing condition (10), plays a very important
role in the interpretation of peaks observed in the trajectory of a time series
when the underlying distribution has fat tails. Indeed the higher this value π0 is
close to the unity, more there is presence of large positive values and in contrario,
more this value is close to zero, more the occurrence of minima is important.
This coefficient is defined here by:

π0 = lim
x→∞

P{η1 > x}

P{|η1| > x}
and 1− π0 = lim

x→∞

P{η1 < −x}

P{|η1| > x}
.

The probability that η1 and |η1| exceed a threshold x fixed, can be estimated by
the following frequencies:

P̂{η1 > x} =
card{t, η̂t > x}

n
and P̂{|η1| > x} =

card{t, |η̂t| > x}

n
,
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where η̂t is the residual il the estimation of the model, n the sample size. Then,
the coefficient π0 can be estimated by the mean of r ratios.

π̂0 =
1

r

r∑

i=1

P̂{η1 > xi}

P̂{|η1| > xi}
.

5.3. Estimation of γ0

The scale parameter σt is modeled by:

σt = exp



a0 +

m∑

j=1

ajxtj



 .

The parameter γ0 defined by the following limit

γα0 = lim
n→∞

1

n

n∑

t=1

σα
t

can be estimated by

γ̂0
α̂ = lim

n→∞

1

n

n∑

t=1

σ̂α̂
t

where

σ̂t = exp



â0 +

m∑

j=1

âjxtj





and α̂, â0, âj are the values of α, a0 and aj obtained by the maximum likelihood
estimation method.

6. Simulation study

6.1. Method of simulation

For the simulation, the realizations of the random variable ηt are generated by
using the following representation: ηt = ΓtVt.

(Γt) is a sequence of independent and identically distributed random variables
such as

P{Γt = 1} = π0 and P{Γt = −1} = 1− π0,

π0 is the coefficient of tails balancing defined by (10), if π0 = 1
2 then the dis-

tribution is symmetric. We can verify easily that Γt can be written as Γt =
I{Ut≤π0} − I{Ut>π0}, where (Ut) are random variables uniformly distributed in
(0, 1), IA is the indicator function of the set A.
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(Vt) a another sequence of independent and identically distributed random
variables and satisfies the following conditions:

P{V1 < x} = φα(x) = exp(−x−α), α > 0, for x > 0,

= 0 for x ≤ 0.

The random variables Vt are generated using the following function (−logUt)
−1/α

where Ut ∼ U(0, 1). The random variables Γt and Vt are assumed to be indepen-
dent.

The tail balancing condition (10) is verified by the random variables (ηt).
Indeed

P{ηt < x} = P{ΓtVt < x}, with x < 0

= E (P{ΓtVt < x | Γt})

= π0P{Vt < x}+ (1− π0)P{−Vt < x}

= (1− π0)P{−Vt < x},

then

P{ηt < −x} = (1− π0)P{Vt > x}, for x > 0.

Thus we obtain

P{ηt < −x}

P{|ηt| > x}
=

(1− π0)P{Vt > x}

P{Vt > x}
= 1− π0.

Then

P{ηt > x} = P{ΓtVt > x}, with x > 0

= E (P{ΓtVt > x | Γt})

= π0P{Vt > x}+ (1− π0)P{−Vt > x}

= π0P{Vt > x}.

Finally
P{ηt > x}

P{|ηt| > x}
=

π0P{Vt > x}

P{Vt > x}
= π0.

6.2. Models studied in simulation

For the simulation we consider the threshold autoregressive model defined by:

Xt =

{
φ1Xt−1 + σtηt, si yt ≤ τ,

φ2Xt−1 + σtηt, si yt > τ,
(23)
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where σt is a function of t defined by:

σt = exp(a0 + a1t),

and ηt is a sequence of independent random variables identically distributed such
as

P{|η1| > x} = 1− exp(−x−α), α > 0,

τ and φi are real constants and yt is the threshold variable.
All of the simulations involve one of the following models summarized in

Table 1. The first one is stationary and the others nonstationary. In all these
models, the threshold variable Yt is uniformly distributed in (0, 1).

For simplicity, we propose to expose in this subsection only the results of
simulation of Model 1, Model 2 and Model 3. The results of Model 4,
Model 5 and Model 6 show that the parameter α and the threshold τ have no
influence on the results of simulation, hence they are not presented.

α φ1 φ2 τ a0 a1
Model 1 0.5 0.3 0.7 0.5 0 0
Model 2 0.5 0.3 0.7 0.5 0 1.3
Model 3 0.5 0.3 0.7 0.5 0.5 1.3
Model 4 1 0.3 0.7 0.2 0 1.3
Model 5 1 1.2 0.8 0.8 0 1.3
Model 6 1.5 1.2 0.8 0.5 0 1.3

Table 1. Data generating processes.

6.3. Numerical illustration

In our simulation we choose π0 = 0.5. We simulate s = 1000 realizations of length
n = 1000 for the process (Xt) defined in (23). We obtain s estimates values for
each parameter. Example, for α, we obtain α̂1, . . . , α̂s and we calculate

α̂ =
1

s

s∑

i=1

α̂i, RMSE =

(
1

s

s∑

i=1

(α̂i − α0)
2

)1/2

, MAE =
1

s

s∑

i=1

|α̂i − α0| .
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α̂ φ̂1 φ̂2

Mean 0.493 0.298 0.656
RMSE 0.054 0.014 0.161
MAE 0.040 0.002 0.047

Table 2. Estimated values for the Model 1.

α̂ φ̂1 φ̂2 â1
Mean 0.504 0.300 0.699 1.280
RMSE 0.048 0.003 0.014 0.301
MAE 0.037 0.001 0.001 0.028

Table 3. Estimated values for the Model 2.

α̂ φ̂1 φ̂2 â0 â1
Mean 0.482 0.298 0.664 0.437 1.303
RMSE 0.096 0.044 0.144 0.067 0.035
MAE 0.052 0.010 0.045 0.040 0.011

Table 4. Estimated values for the Model 3.

6.4. Goodness of fit test

It is known according to the Theorem 4 that the distribution of the normalized
maximum of the process (Xt)t is well approximated by the Fréchet’s distribution.
Now we investigate, by simulation experiments, the goodness-of -fit of the limiting
distribution. We generate N = 250000 realizations from the process (Xt)t and
we use the blocks method dividing the data into m = 625 blocks of observations

of length n = 400. Let M
(j)
n = max(X

(j)
1 , X

(j)
2 , . . . ,X

(j)
n ) be the maximum of

the n observations of the block j. The normalized maxima are then defined by

a−1
n M

(1)
n , . . . , a−1

n M
(m)
n with an =

(
log n

n−1

)−1/α
.

We first use a graphical tool in order to compare the two distributions. In
Figure 1, the corresponding qq-plot shows a satisfactory fitting.

This result is confirmed by Kolmogorov-Smirnov test at 5% level under the
null hypothesis that the distribution of the normalized maxima follows the law
given in the Theorem 4. The Statistics of Kolmogorov (KS) and p-values are
given in the Table 5.
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α 0.5 1 1.5

KS 0.0525 0.0425 0.0401
p-value 0.6399 0.8186 0.8629

Table 5. Kolmogorov-Smirnov Statistics and p-values between the empirical law of the
normalized maxima and the limit laws.

Figure 1. QQ-plot of maxima normalized block maxima against the theoretical limiting
distribution for the process(23) with α = 0.5 (top), α = 1 (middle), α = 1.5 (bottom),
with φ1 = 0.3, φ2 = 0.7.



On the extremes of a class of nonstationary processes 179

References

[1] R. Ballerini and W.P. McCormick, Extreme value theory for process with periodic

variances , Comm. Statist. Stochastic Models 39 (1989) 45–61.

[2] P. Billingsley, Convergence of probability measures (Wiley, New York, 1968).

[3] A. Brandt, The Stochastic Equation Yn+1 = AnYn+Bn with Stationary Coefficients ,
Adv. Appl. Probab. 18 (1986) 211–220.

[4] S. Coles, An Introduction to Statistical Modelling of Extreme Values (Springer,
London, 2001).

[5] R.A. Davis and T. Hsing, Point process and partial sum convergence for weakly

dependent random variables with infinite variance, Ann. Appl. Probab. 23 (1995)
879–917.

[6] R.A Davis and S.I Resnick, Extremes of moving average of random variables from

the domain of attraction of the double exponential distribution, Stochastic Processes
and their Applications 30 (1988) 41–68.

[7] R.A Davis and S.I Resnick, Limit theory for bilinear process with heavy-tailed noise,
Ann. Appl. Probab. 6 (1996) 1191–1210.

[8] A. Diop and S. Diouf, Tail behavior for nonstationary moving average with random

coefficients , J. Concrete and Applicable Math. 9 (2011) 336–345.

[9] A. Diop and S. Diouf, Extreme value theory for nonstationary random coefficients

time series with regularly varying tails , J. Afrika Stat. 5 (2010) 268–278.

[10] E.F Eastoe and J.A. Tawn, Modelling non-stationary extremes with to surface level

ozone, J.R. Stat. Soc., Ser. C, Appl. Stat. 58 (2009) 25–45.

[11] W. Feller, An Introduction to Probability Theory and Its Application (Wiley, New
York, 1971).

[12] J. Horowitz, Extreme values for nonstationary stochastic process: an application to

air quality analysis , Technometrics 22 (1980) 469–478.

[13] O. Kallenberg, Random Measures (3rd ed. Akademie, Berlin, 1983).

[14] R. Kulik, Limit theorem for moving average with random coefficients and heavy

tailed noise, J. Appl. Probab. 43 (2006) 245–256.

[15] J. Neveu, Processus Ponctuels, Ecole d’Eté de Probabilités de Saint-Flour VI Lecture
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