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Abstract

The paper provides several original conditions involving ranks and traces
of functions of a pair of orthogonal projectors (i.e., Hermitian idempotent
matrices) under which the functions themselves are orthogonal projectors.
The results are established by means of a joint decomposition of the two
projectors.
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1. Introduction

Let Cm,n denote the set of m×n complex matrices. The symbols K∗, R(K), and
rk(K) will stand for the conjugate transpose, column space (range), and rank of
K ∈ Cm,n, respectively. Further, In will be the identity matrix of order n, and
for a given K ∈ Cn,n we define K = In−K. Another function of a square matrix
K ∈ Cn,n, which will be referred to in what follows, is its trace tr(K).
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A crucial role in the considerations of the present paper is played by the
class of orthogonal projectors in Cn,1 (Hermitian idempotent matrices of order
n), whose set will be denoted by C

OP
n , i.e.,

C
OP
n = {P ∈ Cn,n : P2 = P = P∗}.

It is known that P ∈ C
OP
n if and only if the matrix is expressible as KK† for

some K ∈ Cn,m, where K† ∈ Cm,n is the Moore-Penrose inverse of K, i.e., the
unique matrix satisfying the equations

(1) KK†K = K, K†KK† = K†, (KK†)∗ = KK†, (K†K)∗ = K†K.

Then PK = KK† is the orthogonal projector onto R(K) and, consequently,
PK = In −KK† is the orthogonal projector onto the orthogonal complement of
R(K).

Let P ∈ C
OP
n be of rank r. Then there exists unitary U ∈ Cn,n such that

(2) P = U

(
Ir 0

0 0

)

U∗.

Clearly, any other orthogonal projector of order n, say Q ∈ C
OP
n , can be repre-

sented as

(3) Q = U

(
A B

B∗ D

)

U∗,

with A ∈ Cr,r and D ∈ Cn−r,n−r being Hermitian. Two particular versions of the
representation (3) are obtained when r = 0, in which case the matrices A and B

are absent, and when r = n, in which case the matrices D and B are absent.

In what follows we recall selected properties of the matrices A, B, and D

involved in the representation (3); for their formal derivations see e.g., [6, Lemmas
1 and 4].

Lemma 1. Let P,Q ∈ C
OP
n be of the forms (2) and (3), respectively. Then:

(i) A = A2 +BB∗,

(ii) A = A
2
+BB∗,

(iii) D = D2 +B∗B,

(iv) D = D
2
+B∗B,

(v) rk(A) = r − rk(A) + rk(B),

(vi) rk(D) = n− r + rk(B) − rk(D).

The lemma below is an extraction of the rank identities given in [6, Lemma 5].
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Lemma 2. Let P,Q ∈ C
OP
n be of the forms (2) and (3), respectively. Then:

(i) rk(PQ) = rk(A),

(ii) rk(P+Q) = r + rk(D),

(iii) rk(P−Q) = r − rk(A) + rk(B) + rk(D),

(iv) rk(In −PQ) = n− rk(A) + rk(B),

(v) rk(PQ +QP) = rk(A) + rk(B),

(vi) rk(PQ −QP) = 2 rk(B),

(vii) rk(P+Q−PQ) = r + rk(D),

(viii) rk(In −P−Q) = n− r + rk(A) + rk(B)− rk(D).

On account of the fact that A is a contraction, the matrix was in [4, p. 2253]
represented as

(4) A = Vdiag(1, . . . , 1
︸ ︷︷ ︸

k times

, α1, . . . , αl, 0, . . . , 0
︸ ︷︷ ︸

m times

)V∗,

where V ∈ Cr,r is unitary, r = k + l + m, and αi, i = 1, . . . , l, satisfying α1 >

α2 > · · · > αl, are the eigenvalues of A belonging to the set (0, 1), i.e., l = rk(B).
Similarly, the spectral decompositions of D provided in [4, p. 2251] reads

(5) D = Wdiag(1, . . . , 1
︸ ︷︷ ︸

s times

, δ1, . . . , δt, 0, . . . , 0
︸ ︷︷ ︸

u times

)W∗,

with unitary W ∈ Cn−r,n−r, n − r = s + t + u, and δj , j = 1, . . . , t, such that
δ1 > δ2 > · · · > δt, denoting the eigenvalues of D belonging to the set (0, 1), i.e.,
t = rk(B).

The next section of the paper provides a collection of (to the best of our
knowledge) original characterizations of requirements that a given function of
a pair of orthogonal projectors is an orthogonal projector itself. A particular
attention is paid to the characterizations which exploit the notions of rank and
trace of the function under consideration.

2. Main results

In the literature, one can find several conditions equivalent to the requirement
that PQ ∈ C

OP
n , or, equivalently, to the commutativity property PQ = QP;

see e.g., [1, 2, 3, 8]. The first theorem of the paper establishes additional four
conditions of the kind, each of which involves rank and/or trace of a function of
the product PQ.

Theorem 3. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,
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(ii) rk(PQ) = tr(PQ),

(iii) rk(PQ) = tr[PQP],

(iv) rk(PQ +QP) = 1

2
tr(PQ +QP),

(v) tr(PQ+QP) = 1

2
tr[(PQ +QP)2].

Proof. We will exploit the representations (2) and (3) to show that all conditions
listed in the theorem are equivalent to B = 0. First observe that from (2) and
(3) it follows that

(6) PQ = U

(
A B

0 0

)

U∗,

whence we conclude that PQ = QP or, in other words, PQ ∈ C
OP
n holds if and

only if B = 0.
Since rk(PQ) = rk(A) and tr(PQ) = tr(A), it follows that rk(PQ) =

tr(PQ) if and only if rk(A) = tr(A). By the decomposition (4), it is seen that
rank and trace of A coincide merely when A has no eigenvalues belonging to
the set (0, 1), which is equivalent to the requirement that B = 0 (parenthetically
note that B = 0 ⇔ A2 = A).

In the light of

PQP = U

(
A 0

0 0

)

U∗,

it is clear that also the condition in point (iii) of the theorem is equivalent to
B = 0.

Similarly, in view of

PQ+QP = U

(
2A B

B∗ 0

)

U∗,

and the formula for rank of PQ + QP given in Lemma 2, we arrive at the
conclusion that

rk(PQ+QP) =
1

2
tr(PQ +QP) ⇔ B = 0.

To complete the proof, observe that direct calculations show that the trace iden-
tity given in point (v) of the theorem is satisfied if and only if

(7) tr(A) = tr(A2) +
1

2
tr(BB∗),

where the fact that tr(BB∗) = tr(B∗B) was utilized. Hence, by point (i) of
Lemma 1, the condition (7) can be expressed as tr(A) = tr(A2), which, in the
light of (4) is equivalent to B = 0.
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For further conditions equivalent to PQ ∈ C
OP
n , each of which is based on

rank of a function of the product PQ, see [3, Theorem 6]. Among the conditions
given therein one finds:

(i) rk(In −PQ) + rk(PQ) = n,

(ii) rk(P−Q) = rk(P+Q)− rk(PQ),

(iii) rk(PQ) = rk(PQ+QP).

The next theorem provides a number of conditions equivalent to PQ ∈ C
OP
n

involving the notion of a partial isometry. Recall that the class of partial isome-
tries is defined by

C
PI
n,m =

{
K ∈ Cn,m : K∗ = K†

}
;

for alternative characterizations of the class see [9, Theorem 5, §6.4]. In what
follows, whenever m = n, instead of CPI

n,n we will write C
PI
n .

Theorem 4. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,

(ii) PQ ∈ C
PI
n ,

(iii) P−Q ∈ C
PI
n ,

(iv) PQP ∈ C
PI
n ,

(v) In −P−Q ∈ C
PI
n ,

(vi) P+Q−PQ ∈ C
PI
n .

Proof. In the light of (6) and the representation of the Moore–Penrose inverse
of PQ given in the Appendix, we conclude that PQ ∈ C

PI
n if and only if PA = A

and B∗ = B∗A†. By point (i) of Lemma 1 it is seen that the former of these
conditions is equivalent to B = 0 or, in other words, to PQ ∈ C

OP
n .

A proof referring to the remaining points of the theorem will be established
in a similar fashion. Exploiting the representation of (P−Q)†, we conclude that
P−Q ∈ C

PI
n is equivalent to the following conjunction of three conditions

P
A

= A, B = BD†, PD = D.

Combining now, P
A

= A with point (ii) of Lemma 1 proves that P
A

= A ⇔
B = 0, whereas combining PD = D with point (iii) of Lemma 1 gives PD =
D ⇔ B = 0. The proof of point (iii) is, thus, complete.

To show that PQP ∈ C
PI
n is also equivalent to B = 0, note that on account

of the representation of (PQP)†, given in the Appendix, we obtain

PQP ∈ C
PI
n ⇔ A = A†.

By (4) it is clear that A = A† holds if and only if B = 0.
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Utilizing the representation of the Moore–Penrose inverse of In−P−Q yields

In −P−Q ∈ C
PI
n ⇔ PA = A, B = A†B, P

D
= D.

In the light of points (i) and (iv) of Lemma 1 it is seen that PA = A and P
D

= D

are both equivalent to B = 0, what establishes the part (i) ⇔ (v) of the theorem.

To prove that also the condition (vi) holds if and only if PQ ∈ C
OP
n , we again

exploit the corresponding representation of the Moore–Penrose inverse. Hence,
we conclude that

P+Q−PQ ∈ C
PI
n ⇔ B = 0,D = D†.

Now, in view of (5), we see that B = 0 ⇔ D = D†, what completes the proof.

Since any K ∈ Cn,n satisfies K ∈ C
PI
n ⇔ K† ∈ C

PI
n ⇔ K∗ ∈ C

PI
n (see

[9, Theorem 5, §6.4]), further conditions equivalent to PQ ∈ C
OP
n ore obtained

from Theorem 2 by replacing the functions of P and Q on the right-hand sides
of the conditions (ii)–(vi) either by their Moore–Penrose inverses or conjugate
transposes.

Further conditions equivalent to PQ ∈ C
OP
n , each of which involves the

Moore–Penrose inverse of a function of P and Q are given in the following corol-
lary. Its proof is omitted, for it is a direct consequence of Theorem 4.

Corollary 5. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,

(ii) PQ = (PQ)†,

(iii) P−Q = (P−Q)†,

(iv) PQP = (PQP)†,

(v) In −P−Q = (In −P−Q)†,

(vi) P+Q−PQ = (P+Q−PQ)†.

An interesting observation is that B does not need to be the zero matrix to
ensure that PQ−QP ∈ CPI

n . To be more precise, by exploiting the representation
of (PQ−QP)†, provided in the Appendix, we conclude that PQ−QP ∈ C

PI
n ⇔

B ∈ C
PI
r,n−r. Hence, B = 0 clearly implies PQ−QP ∈ C

PI
n , but this implication

is not reversible.

Another fact related to Theorem 4 is that yet another condition equivalent
to PQ ∈ C

OP
n , namely In −PQ ∈ C

PI
n , was identified in [5, Theorem 10(iii)]).

In what follows we focus our attention on the condition P+Q ∈ C
OP
n . Recall

that P + Q ∈ C
OP
n ⇔ PQ = 0 ⇔ A = 0, with the last equality obtained by

combining the representation (6) with point (i) of Lemma 1.
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Theorem 6. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) P+Q ∈ C
OP
n ,

(ii) P+Q ∈ C
PI
n ,

(iii) PQ+QP ∈ C
PI
n ,

(iv) tr(P+Q) = tr[(P+Q)2].

Proof. The expression for the Moore–Penrose inverse of P+Q given in Appendix
yields

(8) P+Q ∈ C
PI
n ⇔ A = −

1

2
P

A
, B = −BD†, and D = 2D† −PD.

Direct calculations show that if A is of the form (4), then

P
A

= Vdiag(1, . . . , 1
︸ ︷︷ ︸

k times

, 0, . . . , 0
︸ ︷︷ ︸

l times

, 0, . . . , 0
︸ ︷︷ ︸

m times

)V∗.

Hence, it is seen that A = −1

2
P

A
if and only if A has no nonzero eigenvalues,

which means that A = 0. Analogous derivations lead to the conclusion that if D
is of the form (5), then D = 2D† −PD if and only if

δ2i + δi − 2 = 0 for all i = 1, . . . , t.

Since this equation does not have a solution in the set (0, 1), we see that the last
condition on the right-hand side of the equivalence (8) holds if and only if B = 0,
which completes the proof dealing with point (ii) of the theorem.

Let us now consider the condition PQ+QP ∈ C
PI
n . Utilizing the expression

for the Moore–Penrose inverse of PQ+QP proves that the sum of two products
is a partial isometry if and only if B = 0 and 4A = A†. Exploiting again the
representation (4) leads to the conclusion that these two conditions are equivalent
to A = 0. Hence, PQ+QP ∈ C

PI
n ⇔ A = 0.

So, point (iv) of the theorem is left to be considered. As can be directly
verified, the trace identity given therein holds if and only if

tr(A) + tr(A2) + tr(BB∗) + tr(B∗B) + tr(D2) = tr(D).

On account of the relationships in points (i) and (iii) of Lemma 1, this equality
reduces to tr(A) = 0, i.e., A = 0.

The corollary below is a direct consequence of points (ii) and (iii) of Theo-
rem 6.

Corollary 7. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) P+Q ∈ C
OP
n ,
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(ii) P+Q = (P+Q)†,

(iii) PQ+QP = (PQ +QP)†.

It is clear that P + Q ∈ C
OP
n implies PQ ∈ C

OP
n , but not vice versa. The

lemma below lists three conditions each of which combined with the requirement
that the product PQ is an orthogonal projector ensures that the sum P +Q is
an orthogonal projector.

Lemma 8. Let P,Q ∈ C
OP
n . Then P +Q ∈ C

OP
n if and only if PQ ∈ C

OP
n and

any of the following conditions is satisfied:

(i) rk(P+Q) = tr(P+Q),

(ii) rk(P+Q) = tr[(P +Q)2],

(iii) rk(P+Q) = tr[(P +Q)†].

Proof. Combining the expression for rank of P + Q given in Lemma 2 with
tr(P+Q) = r + tr(A) + tr(D) shows that

rk(P+Q) = tr(P+Q) ⇔ rk(D) = tr(A) + tr(D).

Now, if PQ ∈ C
OP
n , i.e., if B = 0, then rk(D) = tr(D), whence we arrive at

A = 0, which completes the proof dealing with point (i) of the theorem.
Similarly, on account of B = 0, we obtain

rk(P +Q) = tr[(P +Q)2] ⇔ rk(D) = 2tr(A) + tr(A2) + tr(D2).

Hence, by rk(D) = tr(D2) and tr(A) = tr(A2) we in turn conclude that A is
necessarily the zero matrix.

The proof of the last point is established analogously. First observe that
the condition B = 0 entails tr(D) = tr(D†) = tr(PD). In consequence, direct
calculations show that

rk(P+Q) = tr[(P+Q)†] ⇔ P
A

= 0.

This identity is satisfied exclusively when A has no unit eigenvalues, which (in
the light of B = 0) can happen only when A = 0.

Subsequently we focus our attention on the difference P − Q. It is known
that P −Q ∈ C

OP
n ⇔ PQ = Q ⇔ D = 0; see [3, Lemma 2]. The next theorem

provides two rank/trace counterparts of the condition P−Q ∈ C
OP
n .

Theorem 9. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) P−Q ∈ C
OP
n ,

(ii) tr(P−Q) = tr[(P−Q)2],

(iii) rk(P−Q) = tr[(P −Q)†].
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Proof. In view of points (ii) and (iii) of Lemma 1, we obtain tr[(P − Q)2] =
r − tr(A) + tr(D). Hence, the equivalence between condition (ii) of the theorem
and identity D = 0 follows by direct calculations.

From the representation of the Moore–Penrose inverse of P−Q, we obtain

tr[(P−Q)†] = tr(P
A
)− tr(PD) = rk(P

A
)− rk(PD) = rk(A)− rk(D).

Thus, on account of the formulae for ranks of A and P−Q, we arrive at

rk(P−Q) = tr[(P −Q)†] ⇔ D = 0,

which completes the proof.

The lemma below identifies a condition which combined with the requirement
that PQ ∈ C

OP
n constitutes a conjunction equivalent to P−Q ∈ C

OP
n .

Lemma 10. Let P,Q ∈ C
OP
n . Then P − Q ∈ C

OP
n if and only if PQ ∈ C

OP
n

holds along with rk(P−Q) = tr(P−Q).

Proof. Since B = 0 yields, both, rk(A) = tr(A) and rk(D) = tr(D), on account
of the formula for rank of P−Q provided in Lemma 2, we obtain rk(P−Q) =
tr(P−Q) ⇔ D = 0.

In what follows our attention focuses on the condition PQP ∈ C
OP
n . In fact,

it is known (and can be easily verified within the setting utilized in the present
paper) that PQP ∈ C

OP
n ⇔ PQ ∈ C

OP
n ; this is a particular case of a more general

result established in [8, Theorem].

Theorem 11. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,

(ii) PQP ∈ C
OP
n ,

(iii) rk(PQP) = tr(PQP),

(iv) rk(PQP) = tr[(PQP)2],

(v) tr(PQP) = tr[(PQP)2],

(vi) rk(PQP) = tr[(PQP)†],

(vii) tr(PQP) = tr[(PQP)†].

Proof. The proof is limited to an observation that the conditions provided in
points (iii)–(vii) of the theorem are equivalent to rk(A) = tr(A), rk(A) = tr(A2),
tr(A) = tr(A2), rk(A) = tr(A†), and tr(A) = tr(A†), respectively, each of which
is equivalent to B = 0.

Yet another set of conditions equivalent to PQ ∈ C
OP
n is given in what

follows. The theorem below puts emphasis on the function In − PQ, which,
clearly, satisfies the equivalence PQ ∈ C

OP
n ⇔ In −PQ ∈ C

OP
n .
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Theorem 12. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,

(ii) In −PQ ∈ C
OP
n ,

(iii) rk(In −PQ) = tr(In −PQ),

(iv) rk(In −PQ) = tr[(In −PQ)(In −PQ)∗],

(v) tr(In −PQ) = tr[(In −PQ)2],

(vi) rk(In −PQ) = tr[(In −PQ)†].

Proof. By exploiting the formula for rank of In − PQ given in Lemma 2, we
arrive at the conclusion that the condition given in point (iii) of the theorem is
satisfied if and only if

(9) rk(A)− tr(A) = rk(B).

In the light of the symbols used in (4), we have rk(A) = k+l, tr(A) = k+
∑l

i=1
αi,

and rk(B) = l. Hence, the relationship (9) reduces to
∑l

i=1
αi = 0, which is

equivalent to B = 0, i.e., the part (i) ⇔ (iii) is established.
Direct calculations show that also the condition in point (iv) of the theorem

is satisfied if and only if identity (9) holds.
The proof concerned with point (v) also follows straightforwardly leading to

the conclusion that the identity therein is equivalent to tr(A) = tr(A2), which,
as already remarked in the paper, can alternatively be expressed as B = 0.

To complete the proof we need to consider its condition (vi). It can be easily
verified that it is satisfied if and only if

(10) rk(A) + tr(A
†
) = r + rk(B).

In the light of the relationships provided right below identity (9), as well as the

fact that tr(A
†
) = r − k − l +

∑l
i=1

1

1−αi

, we conclude that (10) is equivalent

to
∑l

i=1

1

1−αi
= l. However, this identity cannot be satisfied if αi, i = 1, . . . , l,

belong to the set (0, 1). Thus, it is seen that all nonzero eigenvalues of A are
equal to 1, i.e., B = 0.

Observe that the equivalences between the requirement that PQ ∈ C
OP
n and

the conditions (iii) and (v) of Theorem 12 were established (by exploiting different
approach) in [5, Theorem 10], where also other properties of the function In−PQ

were listed.
It is an easy exercise to show that

PQ−QP ∈ C
OP
n ⇔ PQ ∈ C

OP
n .

Three rank/trace identities equivalent to PQ ∈ C
OP
n , each of which involves the

difference PQ−QP, are given in the following theorem.
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Theorem 13. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,

(ii) PQ−QP ∈ C
OP
n ,

(iii) rk(PQ −QP) = tr(PQ −QP),

(iv) rk(PQ −QP) = tr[(PQ −QP)†],

(v) tr(PQ−QP) = tr[(PQ−QP)(PQ −QP)∗].

Proof. Recall that the formula for rank of PQ−QP was provided in Lemma 2.
Now, it can be easily verified that tr(PQ −QP) = 0, tr[(PQ −QP)†] = 0, and
tr[(PQ −QP)(PQ −QP)∗] = 2tr(BB∗). Hence, the equivalences between each
of the conditions (iii)–(v) of the theorem and B = 0 is clearly seen.

It can be shown without a substantial effort in the present setup that

PQ+QP ∈ C
OP
n ⇔ P+Q ∈ C

OP
n ⇔ PQ+QP = 0 ⇔ PQ = 0;

the result is also known in the literature; see e.g., [7, Theorems 1, 2, and 4].
Hence, it is not too interesting to characterize the condition PQ+QP ∈ C

OP
n in

terms of the sum PQ+QP. However, in the light of the equivalence

PQ+QP ∈ C
OP
n ⇔ In −P−Q ∈ C

OP
n ,

whose validity can be verified directly, it seems reasonable to use for this purpose
the function In −P−Q.

Theorem 14. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) P+Q ∈ C
OP
n ,

(ii) In −P−Q ∈ C
OP
n ,

(iii) rk(In −P−Q) = tr[(In −P−Q)†].

Proof. On account of tr(PA) = rk(PA) = rk(A) and tr(P
D
) = rk(P

D
) =

rk(D), as well as the formula for rk(D) given in Lemma 2, we conclude that the
condition in point (iii) of the theorem is satisfied if and only if A = 0. The proof
is, thus, complete.

The lemma below indicates that the list of three conditions provided in
Lemma 8 can be extended by an additional one determined by the function
In −P−Q.

Lemma 15. Let P,Q ∈ C
OP
n . Then P + Q ∈ C

OP
n if and only if PQ ∈ C

OP
n

holds along with rk(In −P−Q) = tr(In −P−Q).

Proof. Direct calculations show that rk(In −P −Q) = tr(In −P −Q) holds if
and only if

rk(A) + tr(A) + rk(B) = rk(D)− tr(D).

It is clear that combining this identity with B = 0 entails A = 0.
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By exploiting the present setup, it can be proved that P +Q −PQ ∈ C
OP
n

is satisfied if and only if B = 0. In consequence,

P+Q−PQ ∈ C
OP
n ⇔ PQ ∈ C

OP
n .

The paper is concluded with a theorem recognizing two equalities involving rank
and trace of functions of In−P−Q, each of which is equivalent to the requirement
that PQ ∈ C

OP
n .

Theorem 16. Let P,Q ∈ C
OP
n . Then the following conditions are equivalent:

(i) PQ ∈ C
OP
n ,

(ii) P+Q−PQ ∈ C
OP
n ,

(iii) rk(P+Q−PQ) = tr(P+Q−PQ),

(iv) rk(P+Q−PQ) = tr[(P +Q−PQ)†].

Proof. Direct calculations lead to the conclusions that the conditions in points
(iii) and (iv) of the theorem are equivalent to rk(D) = tr(D) and rk(D) = tr(D†),
respectively. In the light of the representation (5), we see that each of the two
equalities is satisfied merely when B = 0.
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Appendix

In what follows we provide the representations of the Moore–Penrose inverses
of selected functions of orthogonal projectors P and Q having the forms (2) and
(3), respectively.

(PQ)† = U

(

PA 0

B∗A† 0

)

U∗,

(P+Q)† = U

(

Ir −
1

2
P

A
−BD†

−D†B∗ 2D† −PD

)

U∗,

(P−Q)† = U

(

P
A

−BD†

−D†B∗ −PD

)

U∗,

(PQP)† = U

(

A† 0

0 0

)

U∗,

(In −PQ)† = U

(

A −B

0 In−r

)

U∗,

(PQ +QP)† = U

(
1

2
A† − 1

2
A†B(B∗A†B)†B∗A† A†B(B∗A†B)†

(B∗A†B)†B∗A† −2(B∗A†B)†

)

U∗,

(PQ −QP)† = U

(

0 −(B∗)†

B† 0

)

U∗,

(In −P−Q)† = U

(

−PA −A†B

−B∗A† P
D

)

U∗,

(P+Q−PQ)† = U

(

Ir 0

−D†B∗ D†

)

U∗.

Validity of these representations can be verified by exploiting the four Penrose
conditions given in (1). Details on how most of these representations were derived
can be found in articles [3, 4] and [6, 7].
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