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Abstract

Structural change for the Koyck Distributed Lag Model is analyzed
through the Bayesian approach. The posterior distribution of the break
point is derived with the use of the normal-gamma prior density and the
break point, ν, is estimated by the value that attains the Highest Posterior
Probability (HPP). Simulation study is done using R.

Given the parameter values ϕ = 0.2 and λ = 0.3, the full detection of the
structural change when σ2 = 1 is generally attained at ν + 1. The after one
lag detection is due to the nature of the model which includes lagged variable.
The interval estimate HPP near ν consistently and efficiently captures the
break point ν in the interval HPPt ± 5% of the sample size. On the other
hand, the detection of the structural change when σ2 = 2 does not show any
improvement of the point estimate of the break point ν.
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1. Introduction

When certain economic policy measures begin to take effect, economists are in-
terested on when and how their effects will fully occur. Dependent variables
often react to changes in one or more of the explanatory variables only after a
lapse of time. This delayed reaction suggests the inclusion of lagged explanatory
variables resulting in a dynamical model. One example of a dynamical model is
the distributed lag model.

The general form of a linear distributed lag model (DLM) is

(1) Yt = ϕ+

∞∑
i=0

αiXt−i + ϵt,

where ϕ is constant, ϵt is the error term such that ϵt ∼ N(0, σ2ϵ ), t = 1, 2, . . .,
and any change in Xt will affect E[Yt] in all the later periods. The term αi is
the ith reaction coefficient, and it is usually assumed that limi→∞ αi = 0 and∑∞

i=0 αi = α <∞.

There are many in the literatures that studied structural changes in gener-
alized linear model through Bayesian approach. In 1996, Supe [5] assumed that
when modeling time-series data, parameters are allowed to change with specific
time point. He studied on structural change in AR(1) and AR(2) processes. In
2004, B. Western, et al. [6] studied on a Bayesian model that treats the change-
point in a time series as a parameter to be estimated. In this model, inference
for the regression coefficients reflects prior uncertainty about the location of the
change point. In 2007, J.H. Park, et al. [4] introduced an efficient Bayesian
approach to the multiple changepoint problem in the context of generalized lin-
ear models. In 2012, Chaturvedia [2] assumed structural changes in either the
parameters of the regression model or the disturbances precision.

In this paper, the possible shifts in parameters of the distributed lag model,
specifically the Koyck Scheme [3], is examined. This study derived the posterior
distribution of the break point of a distributed lag model undergoing structural
change and assuming normal-gamma prior. Also, in this study, the author devel-
oped a computer program that computes point estimates and construct credible
sets for the values of the break point. Percentage of credible sets capturing the
real value will be the basis for the accuracy of the estimates.

Definition [1]. LetX = (x1, . . . , xn) be a random sample and Θ = (θ1, θ2, . . . , θk)
be the parameter of interest and π(Θ) be the prior distribution associated with
Θ, and f(X|Θ) the distribution from which the sample was taken. Then the
posterior distribution of Θ given X, is defined as

π(Θ|X) = k · π(Θ)L(Θ|X)
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where k =
1∫

· · ·
∫
π(Θ)L(X|Θ)dΘ

. The likelihood function of the sample X given

Θ is defined as L(Θ|x) = L(θ1, . . . , θk|x1, . . . , xn) =
n∏

i=1

f(xi|θ1, . . . , θk).

Definition [1]. (The Normal-Gamma). Let X be a real random variable and Y
be a positive random variable, then X and Y are said to have a normal-gamma
distribution if the density of X and Y is

f(x, y|µ, τ, α, β) ∝ y1/2 exp

[
−τy
2

(x− µ)2yα−1e−yβ

]
,

where x ∈ R, µ ∈ R, y > 0, τ > 0, α > 0, and β > 0.

2. Posterior analysis

Koyck [3] suggested a simplification of the model in (1). He assumes that the
αi’s decrease exponentially over time, that is: αi = βλi for all i with 0 < λ < 1.
Note that limi→∞ αi = 0 because limi→∞ λi = 0, 0 < λ < 1. Also, note that∑∞

i=1 λ
i = 1

1−λ , then
∑∞

i=1 αi = β
∑∞

i=1 λ
i = β 1

1−λ < ∞. Thus, assumptions
in the reaction coefficients αi’s for each lag explanatory variables in a DLM are
satisfied. Using Koyck’s assumptions, we simplify equation (1) as

Yt = (1− λ)ϕ+ βXt + λYt−1 + ut,

where ut = ϵt−λϵt−1 is the error of the resulting model. It can also be considered
as a linear model with MA(1) error written as

Zt = β0 + βXt + ut,

where Zt = Yt − λYt−1, β0 = (1− λ)ϕ, and ut = ϵt − λϵt−1.

Let (1, 2, . . . , ν, ν + 1, . . . , n) be discrete time points. The structural change
model to be considered is

(2) Zt =

{
β0 + β1Xt + ut, t = 1, 2, . . . , ν

β0 + β2Xt + ut, t = ν + 1, . . . , n,

where Zt = Yt − λYt−1, β0 = (1− λ)ϕ, β2 = β1 +∆, ∆ > 0, and ut = ϵt − λϵt−1.
In matrix form, we can rewrite (2) as

Z = Xβ + u,
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where

Z =

[
Z1

Z2

]
, X =

[
X1 0
0 X2

]
, β =

[
β1

β2

]
, X1 =

1 X1
...

...
1 Xν

 , X2 =

1 Xν+1
...

...
1 Xn

 ,

Z1 =

Z1
...
Zν

 , Z2 =

Zν+1
...
Zn

 , β1 =

[
β0
β1

]
, β2 =

[
β0
β2

]
, and u =

u1...
un

 .
Based on the Bayesian paradigm, to compute the posterior distribution of the
break point, ν, we have to consider the following informations:

1) The prior distribution of ν is uniform over 1, 2, . . . , n.

2) The prior distribution of β given τ is N(β∗, τ−1I). That is,

g1(β|τ) ∝ τ1/2 exp

{
−τ
2

(β − β∗)′(β − β∗)

}
.

3) The marginal distribution of τ is gamma. That is,

g2(τ) ∝ τa−1 exp{−τb}, a > 0, b > 0.

4) The joint prior distribution of the parameters is normal-gamma. That is,

h(β, τ, ν) ∝ g1(β|τ) · g2(τ) = τa−1/2 exp

{
−τ
2

[
2b+ (β − β∗)′(β − β∗)

]}
.

5) The conditional likelihood of (β, τ, ν) given the sample observations (X,Z)
is L = L(β, τ, ν|(X,Z)) given by

L ∝

{
τn/2|Λ|−1/2 exp

{−τ
2 (Z−Xβ)′Λ−1(Z−Xβ)

}
, 1 ≤ ν ≤ n− 1

τn/2|Λ|−1/2 exp
{−τ

2 (Z1 −X1β1)
′Λ−1(Z1 −X1β1)

}
, ν = n,

where τ = 1
σ2
u
, σ2u = ψ−1(1 + λ2), and Λ is the precision matrix. These can

be easily shown by the fact that ut ∼ N(0, ψ−1(1 + λ2)) for t = 1, 2, . . . , n
and Z ∼ N(Xβ, τ−1Λ).

Theorem 1 (Posterior Probability Distribution of the Break Point). If the model
(2) holds and ν, β, and τ are unknown, and if ν is uniformly distributed over
1, 2, . . . , n, the joint prior distribution of β and τ is such that: the conditional
distribution of β given τ is normal with mean β∗ and precision matrix τ−1I
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(τ > 0) where I is a given n×n identity matrix and β∗ is a 4×1 constant vector,
the prior distribution of τ is gamma with parameters a > 0 and b > 0, and ν
is independent of (β, τ), then the posterior distribution of ν given the sample
observation (X,Z) is

π(ν|(X,Z)) = K ·

{
|Λ|−1/2|U|1/2(2/M)a+1/2Γ(a+ 1/2), 1 ≤ ν ≤ n− 1

|Λ|−1/2|U1|1/2(2/M1)
a+1/2Γ(a+ 1/2), ν = n,

where

K =
1∫

|Λ|−1/2|U|1/2(2/M)a+1/2Γ(a+ 1/2)dν

,

for 1 ≤ ν ≤ n− 1,
U = X ′Λ−1X + I

V = X ′Λ−1Z + β∗

W = 2b+ Z′Λ−1Z+ β∗′β∗

M = −V ′U−1V +W

and for ν = n,
U1 = X ′

1Λ
−1X1 + I

V1 = X ′
1Λ

−1Z1 + β∗
1

W1 = 2b+ Z′
1Λ

−1Z1 + β∗′
1 β

∗
1

M1 = −V ′
1U

−1
1 V1 +W1.

Proof. We prove the theorem for the case when 1 ≤ ν ≤ n − 1. The posterior
distribution of the parameters is

π(β, τ, ν|(X,Z)) ∝ L(β, τ, ν|(X,Z)) · h(β, τ, ν)

∝ τ
(2a+n−1)

2 |Λ|−1/2 exp

{
−τ
2

[2b+ (β − β∗)′(β − β∗) + (Z−Xβ)′Λ−1(Z−Xβ)]

}
.

Algebraically, we can simplify the posterior distribution of parameters as

π(β, τ, ν|(X,Z)) ∝ |Λ|−1/2τ
(2a+n−1)

2 exp

{
−τ
2

[
(β−U−1V)′U(β−U−1V)+M

]}
,

letting U = X′Λ−1X + I, V = X′Λ−1Z + β∗, W = 2b + Z′Λ−1Z + β∗′β∗, and
M = −V′U−1V +W for 1 ≤ ν ≤ n − 1. Integrating out β and τ gives us the
posterior distribution of ν below,

π(ν|(X,Z)) ∝ |Λ|−1/2|U|1/2(2/M)a+1/2Γ(a+ 1/2), 1 ≤ ν ≤ n− 1.
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For the case when ν = n, the posterior distribution of ν is given by

π(ν|(X1,Z1)) ∝ |Λ|−1/2|U1|1/2(2/M1)
a+1/2Γ(a+ 1/2), ν = n

where U1 = X′
1Λ

−1X1 + I, V1 = X′
1Λ

−1Z1 + β∗
1, W1 = 2b+ Z′

1Λ
−1Z1 + β∗′

1 β
∗
1

and M1 = −V′
1U

−1
1 V1 +W1.

3. Results and discussions

3.1. Structural change when σ2 = 1

Table 1 gives a summary of detection results for n = 10, while Table 3 gives a
summary for n = 15. For both tables, exact detection is made only when β2 is
twice β1, but interval estimates (HPP near ν) consistently captures the break
point. As change from β1 to β2 increases, point estimates improve while interval
estimates give 100% capture of the break point.

Table 1. Simulation results using n = 10, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 1.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 5 0 49 98%
0.14 1.3 1.4 0 48 96%
0.14 1.5 1.6 0 49 98%

1.4 0.14 1 1.4 5 1 50 100%
0.14 1.3 1.6 1 50 100%
0.14 1.5 1.8 0 50 100%

1.6 0.14 1 1.6 5 0 50 100%
0.14 1.3 1.8 1 50 100%
0.14 1.5 2.0 1 50 100%

1.8 0.14 1 1.8 5 4 50 100%
0.14 1.3 2.0 2 50 100%
0.14 1.5 2.2 8 50 100%

2.0 0.14 1 2.0 5 15 50 100%
0.14 1.3 2.2 18 50 100%
0.14 1.5 2.4 13 50 100%

Table 2 is a sample posterior distribution of the break point ν. From this table,
ν = 6 gives a probability of .4986 while ν = 5 gives a posterior probability of
.3935. Thus the point estimate is ν∗ = 6 but HPP near ν includes ν = 5,
the actual break point. It is a pattern in the succeeding results that the point
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estimate HPP at ν tends to identify a value of ν which is one lag after the break
point. This is because from the structure of the model, complete change in the
model occurs after one lag.

Table 2. Posterior distribution of ν based on n = 10, ϕ = 0.2, λ = 0.3, β∗
0 = 0.14, σ2 = 1,

and ∆ = 1.0.

ν 1 2 3 4 5 6 7 8 9 10
pmf .0013 .0025 .0085 .023 .3935 .4986 .0512 .0147 .0037 .0001

Figure 1 gives the time series plot of the simulated data and the posterior prob-
ability plot based on n = 10 and parameter values indicated in Table 1. We
can see an improvement of the structural change of the plot as the value of ∆
changes from 0.2 to 1.0. Also, the posterior probabilities tend to flock near the
break point as the difference of the beta values increases.

(a) ∆ = 0.2 (b) ∆ = 0.6 (c) ∆ = 1.0

Figure 1.: Plot of the simulated data and the corresponding posterior probability plot
based on n = 10, β∗

0 = 0.14, and σ2 = 1
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Table 3. Simulation results using n = 15, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 1.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 8 0 40 80%
0.14 1.3 1.4 0 43 86%
0.14 1.5 1.6 1 39 78%

1.4 0.14 1 1.4 8 0 50 100%
0.14 1.3 1.6 0 50 100%
0.14 1.5 1.8 0 50 100%

1.6 0.14 1 1.6 8 7 50 100%
0.14 1.3 1.8 7 50 100%
0.14 1.5 2.0 6 50 100%

1.8 0.14 1 1.8 8 27 50 100%
0.14 1.3 2.0 24 50 100%
0.14 1.5 2.2 23 50 100%

2.0 0.14 1 2.0 8 47 50 100%
0.14 1.3 2.2 48 50 100%
0.14 1.5 2.4 47 50 100%

Table 4. Simulation results using n = 30, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 1.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 15 0 41 82%
0.14 1.3 1.4 0 45 90%
0.14 1.5 1.6 0 45 90%

1.4 0.14 1 1.4 15 0 50 100%
0.14 1.3 1.6 0 50 100%
0.14 1.5 1.8 0 50 100%

1.6 0.14 1 1.6 15 0 50 100%
0.14 1.3 1.8 0 50 100%
0.14 1.5 2.0 0 50 100%

1.8 0.14 1 1.8 15 0 50 100%
0.14 1.3 2.0 0 50 100%
0.14 1.5 2.2 0 50 100%

2.0 0.14 1 2.0 15 0 50 100%
0.14 1.3 2.2 0 50 100%
0.14 1.5 2.4 0 50 100%
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Detection at the exact break point is hardly attained when we increase the sample
size n to 30 and 50. This can be seen in Table 4 and Table 5 under the column
HPP at ν. However break points are detected after one lag and can be seen in
the posterior distribution of ν in Table 11 and Table 12 in Section 4. This can be
explained by the fact that the full change can be detected after one lag because
of the nature of the model which includes lagged variable. The interval estimate
HPP near ν consistently captures the break point.

Figure 2 to Figure 4 in the Section 4 give a summary of the time series plots
(first row) of the simulated data and the corresponding posterior probability plots
(second row) of the break point, for different values of ∆. From these figures, it
can be seen that as β2 goes farther away from β1, the structural change in the
model becomes easier to distinguish and the posterior probabilities tend to flock
near ν, the break point.

Table 5. Simulation results using n = 50, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 1.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 30 0 43 86%
0.14 1.3 1.4 0 44 88%
0.14 1.5 1.6 0 40 80%

1.4 0.14 1 1.4 30 1 50 100%
0.14 1.3 1.6 0 50 100%
0.14 1.5 1.8 0 50 100%

1.6 0.14 1 1.6 30 0 50 100%
0.14 1.3 1.8 0 50 100%
0.14 1.5 2.0 0 50 100%

1.8 0.14 1 1.8 30 0 50 100%
0.14 1.3 2.0 0 50 100%
0.14 1.5 2.2 0 50 100%

2.0 0.14 1 2.0 30 1 50 100%
0.14 1.3 2.2 0 50 100%
0.14 1.5 2.4 0 50 100%

3.2. Structural change when σ2 = 2.

Table 6 to Table 9 show that the point estimate of the break point ν (HPP
at ν) hardly detects the simulated break point when σ2 = 2 as compared to
the detection when σ2 = 1 for all sample sizes. However, the highest posterior
probability is attained after one lag, so the interval estimate will contain the
simulated break point.
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Table 6. Simulation results using n = 10, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 2.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 5 0 44 88%
0.14 1.3 1.4 0 39 78%
0.14 1.5 1.6 0 45 90%

1.4 0.14 1 1.4 5 0 49 98%
0.14 1.3 1.6 0 49 98%
0.14 1.5 1.8 0 50 100%

1.6 0.14 1 1.6 5 0 50 100%
0.14 1.3 1.8 0 50 100%
0.14 1.5 2.0 0 50 100%

1.8 0.14 1 1.8 5 0 50 100%
0.14 1.3 2.0 0 50 100%
0.14 1.5 2.2 0 50 100%

2.0 0.14 1 2.0 5 0 50 100%
0.14 1.3 2.2 0 50 100%
0.14 1.5 2.4 0 50 100%

Table 7. Simulation results using n = 15, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 2.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 8 0 25 50%
0.14 1.3 1.4 0 27 54%
0.14 1.5 1.6 0 25 40%

1.4 0.14 1 1.4 8 0 49 98%
0.14 1.3 1.6 0 48 96%
0.14 1.5 1.8 0 48 96%

1.6 0.14 1 1.6 8 0 50 100%
0.14 1.3 1.8 0 50 100%
0.14 1.5 2.0 0 50 100%

1.8 0.14 1 1.8 8 0 50 100%
0.14 1.3 2.0 0 50 100%
0.14 1.5 2.2 0 50 100%

2.0 0.14 1 2.0 8 0 50 100%
0.14 1.3 2.2 0 50 100%
0.14 1.5 2.4 0 50 100%
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Table 8. Simulation results using n = 30, ϕ = 0.2, λ = 0.3, β0 = 0.14, β1 = 1, σ2 = 2.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 15 0 16 32%
0.14 1.3 1.4 0 12 24%
0.14 1.5 1.6 0 19 38%

1.4 0.14 1 1.4 15 0 46 92%
0.14 1.3 1.6 0 45 90%
0.14 1.5 1.8 0 43 86%

1.6 0.14 1 1.6 15 0 50 100%
0.14 1.3 1.8 0 50 100%
0.14 1.5 2.0 0 50 100%

1.8 0.14 1 1.8 15 0 50 100%
0.14 1.3 2.0 0 50 100%
0.14 1.5 2.2 0 50 100%

2.0 0.14 1 2.0 15 0 50 100%
0.14 1.3 2.2 0 50 100%
0.14 1.5 2.4 0 50 100%

Table 9. Simulation results using n = 50, ϕ = 0.2, λ = 0.3, β∗
0 = 0.14, β1 = 1, σ2 = 2.

β2 β∗0 β∗1 β∗2 Break HPP HPP Percentage
Point at ν near ν near ν

1.2 0.14 1 1.2 30 0 17 34%
0.14 1.3 1.4 0 18 36%
0.14 1.5 1.6 0 22 44%

1.4 0.14 1 1.4 30 0 48 96%
0.14 1.3 1.6 0 46 92%
0.14 1.5 1.8 0 45 90%

1.6 0.14 1 1.6 30 0 50 100%
0.14 1.3 1.8 0 50 100%
0.14 1.5 2.0 0 50 100%

1.8 0.14 1 1.8 30 0 50 100%
0.14 1.3 2.0 0 50 100%
0.14 1.5 2.2 0 50 100%

2.0 0.14 1 2.0 30 0 50 100%
0.14 1.3 2.2 0 50 100%
0.14 1.5 2.4 0 50 100%
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4. Tables and graphs

Table 10. Posterior distribution of ν based on n = 15, ϕ = 0.2, λ = 0.3, β∗
0 = 0.14,

σ2 = 1, and ∆ = 1.0.

ν 1 2 3 4 5 6 7 8 9 10
pmf .0008 .0018 .0045 .0088 .0171 .0396 .0738 .4533 .3597 .0228

ν 11 12 13 14 15
pmf .0089 .0045 .0028 .0014 .0001

Table 11. Posterior distribution of ν based on n = 30, ϕ = 0.2, λ = 0.3, β∗
0 = 0.14,

σ2 = 1, and ∆ = 1.0.

ν 1 2 3 4 5 6 7 8 9 10
pmf .0000 .0001 .0001 .0002 .0003 .0005 .0006 .0009 .0027 .0028

ν 11 12 13 14 15 16 17 18 19 20
pmf .0032 .0047 .0084 .0276 .3029 .5339 .0878 .0121 .0041 .0022

ν 21 22 23 24 25 26 27 28 29 30
pmf .0015 .0010 .0007 .0005 .0004 .0003 .0002 .0001 .0000 .0000

Table 12. Posterior distribution of ν based on n = 50, ϕ = 0.2, λ = 0.3, β∗
0 = 0.14,

σ2 = 1, and ∆ = 1.0.

ν 1 2 3 4 5 6 7 8 9 10
pmf .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0002

ν 11 12 13 14 15 16 17 18 19 20
pmf .0003 .0003 .0003 .0004 .0004 .0005 .0005 .0007 .0007 .0008

ν 21 22 23 24 25 26 27 28 29 30
pmf .0009 .0012 .0015 .0020 .0035 .0058 .0072 .0172 .1246 .1878

ν 31 32 33 34 35 36 37 38 39 40
pmf .3058 .2099 .0889 .0162 .0072 .0046 .0025 .0017 .0015 .0010

ν 41 42 43 44 45 46 47 48 49 50
pmf .0007 .0005 .0004 .0004 .0003 .0002 .0002 .0001 .0000 .0000
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(a) ∆ = 0.2 (b) ∆ = 0.6 (c) ∆ = 1.0

Figure 2.: Plot of the simulated data and the corresponding posterior probability plot
based on n = 15, β∗

0 = 0.14, and σ2 = 1

(a) ∆ = 0.2 (b) ∆ = 0.6 (c) ∆ = 1.0

Figure 3.: Plot of the simulated data and the corresponding posterior probability plot
based on n = 30, β∗

0 = 0.14, and σ2 = 1
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(a) ∆ = 0.2 (b) ∆ = 0.6 (c) ∆ = 1.0

Figure 4.: Plot of the simulated data and the corresponding posterior probability plot
based on n = 50, β∗

0 = 0.14, and σ2 = 1
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