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Abstract

This paper presents a Bayesian significance test for a change in mean
when observations are not independent. Using a noninformative prior, a
unconditional test based on the highest posterior density credible set is de-
termined. From a Gibbs sampler simulation study the effect of correlation
on the performance of the Bayesian significance test derived under the as-
sumption of no correlation is examined. This paper is a generalization of
earlier studies by KIM (1991) to not independent observations.
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1. Introduction

Suppose we observe the time series (y1, . . . , yn) as a possible generating stochastic
process {Yt, t ∈ Z}, we consider the autoregressive model of order p (AR(p))

Yt − µt =

p∑

i=1

φi(Yt−i − µt−i) + ǫt,

where µt = E(Yt) and the ǫt’s are iid Gaussian random variables with mean 0
and variance σ2, that are ǫt (iid)  N(0, σ2).
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In this work, we consider the model with a change in the mean µt and variance
σ2 at time m, that is: E(Yt) = µ1 and σ2 = σ2

1 for t = 1, . . . ,m and E(Yt) = µ2

and σ2 = σ2
2 for t = m+ 1, . . . , n. Equivalently we have the model,

(1)



Yt − µ1 =
∑p

i=1 φi (Yt−i − µ1) + ǫt, t = 1, . . . ,m

Yt − µ2 =
∑p

i=1 φi (Yt−i − γt−iµ1 − (1− γt−i)µ2) + ǫt, t = m+ 1, . . . ,m+ p

Yt − µ2 =
∑p

i=1 φi(Yt−i − µ2) + ǫt, t = m+ p+ 1, . . . , n,

where γt is the indicator function such that γt−i = 1 if t− i ≤ m and γt−i = 0 if
t− i > m.

We assume that the roots of the autoregressive polynomial are outside the
unit circle, i.e., the parameter vector φp = (φ1, . . . , φp) lies in the stationarity
region Φp = {φp : (ϕ(z) = 0) ⇒ |z| > 1}, where ϕ(z) = 1−φ1z−φ2z

2−· · ·−φpz
p is

the characteristic polynomial of AR(p) model. The parametres µ1, µ2 (µ1, µ2 ∈
R), φi, (i = 1, . . . , p), σ1, σ2 (σ1, σ2 > 0) are assumed to be unknown, and
m ∈ {1, . . . , n − 2} is the change point assumed also unknown. The aim of
this work is to define a decision rule to detect the existence of a change in the
model parameters from the observations (y1, y2, . . . , yn) and to study the effect
of correlation on the performance of the bayesian significance test derived under
the assumption of no correlation.

One has a parameter set θ = (m,φp, µ1, µ2, r1, r2), where ri = 1/σ2
i . The

likelihood function based on the observations y = (y1, y2, . . . , yn) is then

l(y/θ) ∝r
m
2
1 r

n−m
2

2 exp





r1
2

[
m∑

t=1

(yt − µ1 −

p∑

i=1

φi(yt−i − µ1)

]2


exp





r2
2

[
m+p∑

t=m+1

(yt − µ2 −

p∑

i=1

φi

(
yt−i − γt−iµ1 − (1− γt−i)µ2

)]2




exp





r2
2




n∑

t=m+p+1

(yt − µ2 −

p∑

i=1

φi(yt−i − µ2)



2


(2)

with given (y−p+1, . . . , y0).

A change point, which is generally the effect of an external event on the
phenomenon of interest, may be represented by a change in the structure of the
model or simply by a change of the value of some of the parameters. Since Page
[9, 10] which developed a cumulative sum test to detect a location change, consid-
erable attention has been given to this problem in a variety of settings. Hinkley
[8], Sen and Srisvastava [11], Siegmund [12, 13], Worsley [14, 15] and Kim, H.-J
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[5], who used likelihood ratio approaches. Worsley [14, 15] proposed a numeri-
cal method for computing the p-value of the generalized likelihood ratio test to
detect a change in binomial probability and in location of an exponential family
distribution. Kim, H.-J [5] considers a likelihood ratio test for a change in mean
when observations are correlated. It has showed the sensitivity of the likelihood
ratio statistic derived under the assumption of independence to the nonzero cor-
relation among the observations. It is observed that the p-value deriving under
noncorroleted observations underestimate/overestimate the true pvalues when we
ignore positive/negative autocorrelation.

In Bayesian context, the problem of detection of change was studies by many
authors. we can cite the works of Chernoff and Zacks [3], Kinder et Zacks [6],
Sen and Srivastava [11] where the aim is to detect the change in the mean for
normal random variables. Barbieri and Conigliani [1] adopt the Bayesian ap-
proch with weak prior information about the parameters of the models under
comparison and an exact form of the likelihood function for the identification of
a stationary autoregressive model for a time series and the contemporary detec-
tion of a change in its mean. Kim [7], proposed a Bayesian significance test for
stationarity of a regression equation using the highest posterior density credible
set. From a Monte Carlo simulation study, it has shown that the Bayesian signif-
icance test has stronger power than the Cusum and the Cusum of squares tests
suggested by Brown, Durbin & Evans [2]. Ghorbanzadeh and Lounes [4] pro-
posed a bayesian analysis of detection of a change of parametre in a sequence of
independent random variables from exponential family. However In many appli-
cations, the observations are correlated in various ways. Other references related
of the change-point problem when the data are correlated can be found in Kim,
H.-J [5]. In this work, we propose a Bayesian test based on the HPD credible
regions when the observations are correlated. The rest of paper is organized as
follows, Section 2 presents the bayesian analysis and the bayesian significance
test for change. Simulations results are given in In section 3. Section 4 is our
conclusion.

Notations: We consider the following notations:

φp = (φ1, φ2, . . . , φp), φ(j) = (φ1, . . . , φj−1, φj+1, . . . , φp),

φ(p) = 1−

p∑

i=1

φi, SS1(m,φp, µ1) =

m∑

t=p

(
yt − µ1 −

p∑

i=1

φi(yt−i − µ1)

)2

,

a(m,φp) =

m+p∑

t=m+1

(
1−

p∑

i=1

φi(1− γt−i)

)2

+ (n−m− p)

(
1−

p∑

i=1

φi

)2

,
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SS2(m,φp, µ1) =

n∑

t=m+1

(
yt − µ1 −

p∑

i=1

φi(yt−i − µ1)

)2

−
1

a(m,φp)

[
m+p∑

t=m+1

(
yt − µ1 −

p∑

i=1

φi(yt−i − µ1)
)(

1−

p∑

i=1

φi(1− γt−i)

)

+

n∑

t=m+p+1

(
yt − µ1 −

p∑

i=1

φi(yt−i − µ1)
)(

1−

p∑

i=1

φi

)

2

.

2. Bayesian analysis

Since prior knowledge of θ′ = (µ1, µ2, r1, r2) is often vague or diffuse, we employ
a diffuse prior for θ′. Assume that the priors of the change-point m and of φ(p)

are given by

π(m) ∝
1

n− 2
; m ∈ {1, . . . , n− 2}, π(φ(p)) ∝ constant in Φp .

The parametersm, φ(p) and θ′ being assumed independent. The prior distribution
of θ is, therefore

(3) π(θ) ∝
1

r1r2
.

The posterior distribution of θ, obtained by combination of (2) and (3) is

π(θ/y) ∝r
m
2
−1

1 r
n−m

2
−1

2 exp





r1
2

[
m∑

t=1

(yt − µ1 −

p∑

i=1

φi(yt−i − µ1)

]2


exp





r2
2

[
m+p∑

t=m+1

(yt − µ2 −

p∑

i=1

φi

(
yt−i − γt−iµ1 − (1− γt−i)µ2

)]2




exp





r2
2




n∑

t=m+p+1

(yt − µ2 −

p∑

i=1

φi(yt−i − µ2)



2
 .

(4)

The null hypothesis H0 that there is no change in the parameters of model (1) is

δ = µ2 − µ1 = 0, τ = σ2
2/σ

2
1 = 1.

For the Bayesian significance test, therefore, the posterior distributions of δ and τ
are needed to obtain the confidence region, i.e., highest posterior density credible
set, of δ and τ .



A Bayesian significance test of change 55

The followin theorem give the posterior distribution of δ and τ :

Theorem 1.

1. Given m, φp, µ1 and τ the conditional posterior distribution of δ is

(5) π(δ|m,φp, µ1, τ, y) ∝




1 +

a(m,φp)
(
δ − δ̂(m,φp, µ1)

)2

(n− 1)S2
2(m,φp, τ)





−n
2

,

where

δ̂(m,φp, µ1) =

∑m+p
t=m+1

(
yt − µ1 −

∑p
i=1 φi(yt−i − µ1)

)
(1−

∑p
i=1 φi(1− γt−i))

a(m,φp)

+

∑np
t=m+p+1

(
yt − µ1 −

∑p
i=1 φi(yt−i − µ1)

)
(1−

∑p
i=1 φi)

a(m,φp)
,

S2
2(m,φp, µ1, τ) =

τSS1(m,φp, µ1) + SS2(m,φp, µ1)

(n− 1)
,

which is the Student t distribution with location parameter δ̂(m,φp, µ1), precision
a(m,φp)

S2
2 (m,φp,τ)

, and (n− 1) degrees of freedom. Equivalently, the quantity

(6) t(δ) =
a

1
2 (m,φp)

(
δ − δ̂(m,φp, µ1)

)

S2(m,φp, τ)

is distributed a posteriori as a conditional standard Student t distribution with
(n − 1) degrees of freedom.

2. Given m, φp and µ1, the conditional posterior distribution of τ is:

(7) π(τ |m,φp, µ1, y) ∝ τ
m
2
−1
{
τSS1(m,φp, µ1) + SS2(m,φp, µ1)

}− (n−1)
2

.

Which the quantity

(8) F (τ) =
SS1(m,φp, µ1)/m

SS2(m,φp, µ1)/(n −m− 1)
τ

is distributed a posteriori as a conditional F distribution with (m,n − m − 1)
degrees of freedom.
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3. Given φp, µ1 and τ the posterior conditional distribution of m is

(9) π(m/φp, µ1, τ, y) ∝ a(m,φp)−
1
2S {τSS1(m,φp, µ1) + SS2(m,φp, µ1)}

−n−1
2 .

Proof. See Appendix A.

The unconditional posterior distributions of t(δ) and F (τ) are, respectively

π(t(δ)|Y ) =
∑

m

{∫

φp

[∫

µ1

(∫

τ

π(t(δ)|m,φp, µ1, τ, Y )π(τ |m,φp, µ1, Y )dτ
)

× π(µ1|m,φp, Y )dµ1

]
π(φp|m,Y )dφp

}
π(m|Y ),

(10)

π(F (τ)|Y ) =
∑

m

{∫

φp

[∫

µ1

π(F (τ)|m,φp, µ1, τ, Y )π(µ1|m,φp, Y )dµ1

]

× π(φp|m,Y )dφp
}
π(m|Y ).

(11)

The null hypothesis H0 can be divided into two sub-hypotheses H01 : δ = 0 and
H02 : τ = 1, and Ho could be rejected if either of these two sub-hypotheses is
rejected. One defines separately the highest posterior density credible sets of t(δ)
and F (τ) based on conditional distributions since t(δ) and F (τ) are conditionally
independent. These credible sets will be used to define the unconditional p-value
and therefore an unconditional test.

Given m, φp, µ1 and τ , the (1 − α)-credible set for t(δ) is defined as: Cδ ={
t(δ)/|t (δ)| < tα|2 (n− 1)

}
.

Where tα|2 (n− 1)) is the (1−α/2)th quantile of an t-distribution with (n−1)
degrees of freedom. Hence, given m, φp, µ1 and τ , the decision rule for H0, is to
reject if t(0) ∈ Cδ, where Cδ is the complement of Cδ.

The unconditional p-value of H0, therefore, is calculated from (10) to yield:

(12) Pδ=0�y = 2EmEφpEµ1Eτ

{
1− Tn−1 (| t (0) |)

}
,

where Tn−1 is the cumulative density function of the standard Student t distri-
bution with (n − 1) degrees of freedom, and the expectations Em, Eµ1 and Eτ

are taken with respect to m, µ1 and τ , respectively. Eφp is to note expectations
taken with respect to φ1, φ2, . . . , φp respectively. Our test, therefore, is to reject
H01, if Pδ=0�Y falls below α. This test results in a size α test.

Likewise, the unconditional p-value of H02 is

(13) Pτ=1|y = 2EmEφpEµ1

{
1−Fm,n−m−1[max (F (1), 1|F (1))]

}
,
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where Fm,n−m−1 is the cumulative density function of an F distribution with
(m,n −m− 1) degrees of freedom, also, the test, is to reject H02, if Pτ=1|Y falls
below α.

The quantities (12) and (13) will be evaluated numerically by Gibbs Sampler
algorithm using the conditional posterior distributions given in Theorem 1 and
Lemma 2 of appendix B.

3. Simulation study

Simulation has been used to study the effect of correlation on the bayesian sig-
nificance test based on the highest posterior density credible set (Kim [7], Ghor-
banzadeh and Lounes [4]).

We simulate samples from the model (1) for p = 1, φ1 = 0.5, µ1 = 0.5,
µ2 = 0.2, σ2

1 = 0.5, σ2
2 = 1.5, m = 34, y0 = 0.5 and for n = 70.

From these observations, by the application of the Gibbs sampler algorithm
with 5000 repetitions, we approximate the marginal posterior densities of the
change point m and the unconditional and conditional p-values for the sub-
hypotheses H01 : δ = 0 andet H02 : τ = 1. The marginal posterior density
of m and the conditional p-values given m of H01 and H02 for some values of
neighborhood of the true value of m are given in Table 1.

m π (m�y) Pδ=0�m,y Pτ=1�m,y

32 0.0711 0.000 0.021
33 0.153 0.000 0.017
34 0.663 0.000 0.022
35 0.014 0.000 0.095
36 0.004 0.016 0.201

Table 1. Marginal posterior density of m and the conditional p-values given m of H01

and H02. Estimated by a Gibbs sampler algrorithm with 5000 repetitions.

Table 1 shows that the posterior mode of π (m�y) detecting the true value of
change m = 34, and the sub-hypotheses H01 and H02 are rejected respectively at
significance levels α = 0.05.

The unconditional and conditional given m and ρ p-values of H01 and H02

given in Table 2 show that the test rejects H01 and H02 respectively at signifi-
cance level α = 0.01 and α = 0.05. Therefore, the hypothesis H0 is rejected at
significance level α = 0.01.

To examine the effect of correlation on the Bayesian significance test based on
the HPD credible set derived under the assumption of no correlation, we simulated
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Pδ=0�y Pτ=1�y Pδ=0�m,ρ,y Pτ=1�m,ρ,y

0.0028 0.0272 0.0000 0.0327

Table 2. The unconditional and conditional p-values given m and ρ of H01 and H02

estimated by a Gibbs sampler algrorithm with 5000 repetitions.

observations from model (1) with µ1 = 0, 5, µ2 = 1, 0, σ2
1 = 0, 5, σ2

2 = 1, 0 and
m = 34 for values of ρ from −0, 7 to 0, 7 with step equal to 0, 2. It is observed
that the p-value taken under the assumption of non corelation Pδ=0�ρ=0,y and
Pτ=1�ρ=0,y significantly underestimate the true p-value Pδ=0�y and Pτ=1�y when
the correlation is positive, and overestimate it when the correlation is negative
(Table 3).

ρ Pδ=0�y Pτ=1�y Pδ=0�ρ=0,y Pτ=1�ρ=0,y

-0.7 8.10−13 0,035 5, 4.10−3 0,177
-0.5 5.10−11 0,028 7, 9.10−5 0,253
-0.3 2, 7.10−10 0, 027 1, 4.10−6 0,146
0.0 9, 9.10−7 0,026 2, 9.10−7 0,042
0.3 3, 9.10−3 0,040 6, 5.10−9 0,014
0.5 0, 0358 0,040 2, 6.10−8 9, 5.10−3

0.7 0, 131 0,053 1.0.10−8 9, 0.10−3

Table 3. The unconditional and conditional p-values given ρ = 0 of H01 and H02 for
different values of ρ estimated by a Gibbs sampler algrorithm with 5000 repetitions.

4. Conclusion

In this paper, we developed a bayesian significance test of change in parameters
when the observations are correlated. by numerical studies, we have showed
that the bayesian significance test based on the HPD region is sensitive to the
correlation in the data.

Acknowledgements

The author is grateful to the referee and would like to thank him/her for the
comments and several remarks that improved the quality of this paper.

References

[1] M.M. Barbieri and C. Conigliani, Bayesian analysis of autoregressive time series
with change points, J. Italian Stat. Soc. 7 (1998) 243–255.
doi:10.1007/BF03178933

http://dx.doi.org/10.1007/BF03178933


A Bayesian significance test of change 59

[2] R.L. Brown, J. Durbin and J.M. Evans, Techniques for testing the constancy of
regression relationships over time (with discussion), J.R. Statist. Soc. A 138 (1975)
149–63.

[3] H. Chernoff and S. Zacks, Estimating the current mean distribution which is sub-
jected to change in time, Ann. Math. Statist. 35 (1964) 999–1018.
doi:10.1214/aoms/1177700517

[4] D. Ghorbanzadeh and R. Lounes, Bayesian analysis for detecting a change in expo-
nential family, Appl. Math. Comp. 124 (2001) 1–15.
doi:10.1016/S0096-3003(00)00029-1

[5] H.-J. Kim, Change-point detection for correlated observations, Statistica Sinica 6

(1996) 275–287.

[6] A. Kander and S. Zacks, Test procedure for possible change in parameters of statis-
tical distributions occuring at unknown time point, Ann. Math. Statist. 37 (1966)
1196–1210. doi:10.1214/aoms/1177699265

[7] D. Kim, A Bayesian significance test of the stationarity of regression parametres,
Biometrika 78 (1991) 667–675. doi:10.2307/2337036

[8] D.V. Hinkley, Inference about the change-point in a sequence of random variables,
Biometrika 57 (1970) 1–17. doi:10.2307/2334932

[9] E.S. Page, Continuous inspection schemes, Biometrika 41 (1954) 100–115.

[10] E.S. Page, A test for change in a parameter occurring at an unknown point,
Biometrika 42 (1955) 523–527. doi:10.2307/2333009

[11] A. Sen and M.S. Srivastava, Some one-sided tests for change in level, Technometrics
17 (1975) 61–64. doi:10.2307/1268001

[12] D. Siegmund, Boundary Crossing probabilities and statistical applications, Ann.
Statist. 14 (1986) 361–404. doi:10.1214/aos/1176349928

[13] D. Siegmund, Confidence sets in change point problem, Int. Statist. Rev. 56 (1988)
31–48. doi:10.2307/1403360

[14] K.J. Worsley, The power of likelihood ratio and cumulative sum tests for a change
in a binomial probability, Biometrika 70 (1983) 455–464. doi:10.2307/2335560

[15] K.J. Worsley, Confidence regions and tests for a change-point in a sequence of expo-
nential family random variables, Biometrika 73 (1986) 91–104. doi:10.2307/2336275

Appendice

A. Proof of Theorem

Derivation of the posterior distribution of δ, τ and m:

Transforming the parameter set Θ = (m,φ(p), µ1, µ2, r1, r2) into Φ = (m,φ(p),
µ1, δ, τ), we can form the posterior distribution of Φ; that is,

http://dx.doi.org/10.1214/aoms/1177700517
http://dx.doi.org/10.1016/S0096-3003\(00\)00029-1
http://dx.doi.org/10.1214/aoms/1177699265
http://dx.doi.org/10.2307/2337036
http://dx.doi.org/10.2307/2334932
http://dx.doi.org/10.2307/2333009
http://dx.doi.org/10.2307/1268001
http://dx.doi.org/10.1214/aos/1176349928
http://dx.doi.org/10.2307/1403360
http://dx.doi.org/10.2307/2335560
http://dx.doi.org/10.2307/2336275


60 A. Slama

π(Φ/y) =

∫

r2

π(m,φ(p), µ1, δ + µ1, τr2, r2/y)|r2|dr2

(14)

∝ τ
m
2
−1



τ

m∑

t=1

[
yt − µ1 −

p∑

i=1

φi(yt−i − µ1)

]2

+

m+p∑

t=m+1

[
yt − δ − µ1 −

p∑

i=1

φi

(
yt−i − γt−iµ1 − (1− γt−i)(δ + µ1)

)]2

+

n∑

t=m+p+1

[
yt − δ − µ1 −

p∑

i=1

φi(yt−i − δ − µ1)

]2


−n
2

(15)

∝ τ
m
2
−1

{
τSS1(m,φp, µ1) + SS2(m,φp, µ1) + a(m,φp)

(
δ − δ̂(m,φp, µ1)

)2}−n
2

.

(i) By application of Bayes theorem, the posterior conditional distribution of δ
is obtained as given in (5).

(ii) By integration with respect of δ, we obtained the joint posterior distribution
of m, φp, µ1 and τ :

π(m,φp, µ1, τ/y) ∝ a(m,φp)−
1
2S {τSS1(m,φp, µ1) + SS2(m,φp, µ1)}

−n−1
2 .

(iii) By application of Bayes theorem, given m, φp and µ1 the posterior condi-
tional distribution of τ is given as in (7).

(iv) By application of Bayes theorem, given φp, µ1 and τ the posterior conditional
distribution of m as in (9).

B. Conditional posterior distribution of µ1 and φp

Lemma 2. (1) Given m, φp and τ the conditional posterior distribution of µ1

is

(16) π (µ1|m,φp, τ, Y ) ∝




1 +

b(m,φp, τ)
(
µ1 − µ̂1(m,φp, τ)

)2

(n − 2)S2
3(m,φp, τ)





−
(n−2)

2

,

where

µ̂1(m,φp, τ) =
c(m,φp, τ)

b(m,φp, τ)
,
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S2
3(m,φp, τ) =

1

(n− 2)

[
d(m,φp)−

c2(m,φp, τ)

b(m,φp, τ)

]
,

with

b(m,φp, τ) = φ2(p)(n −m+ τm)

−
φ(p)

a(m,φp)

[
(n −m− p)φ(p) +

m+p∑

t=m+1

(1−

p∑

1

φi(1− γt−i))

]2
,

d(m,φp) = τ
m∑

1

(yt −

p∑

i=1

φiyt−i)
2 +

n∑

m+1

(yt −

p∑

i=1

φiyt−i)
2

−
1

a(m,φp)

[
m+p∑

m+1

(yt −

p∑

i=1

φiyt−i)(1−

p∑

i=1

φi(1− γt−i))

+
n∑

m+p+1

(yt −

p∑

i=1

φiyti)φ(p)



2

,

c(m,φp, τ) = τφ(p)
m∑

1

(yt −

p∑

i=1

φiyt−i) + φ(p)
n∑

m+1

(yt −

p∑

i=1

φiyt−i)

−
φ(p)

a(m,φp)

[
(n−m− p)φ(p) +

m+p∑

m+1

(1−

p∑

i=1

φi(1− γt−i))

]

×



m+p∑

m+1

(yt −

p∑

i=1

φiyt−i)(1−

p∑

i=1

φi(1− γt−i)) +
n∑

m+p+1

(yt −

p∑

i=1

φiyti)φ(p)


 ,

which is the Student t distribution with location parameter µ̂1(m,φp, τ), precision
b(m,φp,τ)
S2
3 (m,φp,τ)

, and (n− 2) degrees of freedom.

(2) For j = 1, . . . , p, given m, φ(j), µ1, δ and τ , the conditional posterior distri-
bution of φj is:

π
(
φj |m,φ(j), µ1, δ, τ, Y

)
∝

{
1 +

e(m,µ1, δ, τ)

(n− 1)S2
4(m,φ(j), µ1, δ, τ)

×
[
φj − φ̂j(m,φ(j), µ1, δ, τ)

]2}−
(n−2)

2

,

(17)
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where

φ̂j(m,φ(j), µ1, δ, τ) =
e1(m,φ(j), µ1, δ, τ)

e(m,µ1, δ, τ)
,

with

e1(m,φ(j), µ1, δ, τ) = τ
m∑

t=1

(
yt−j − µ1

)(
yt − µ1 −

∑

i 6=j

(yt−i − µ1)

)

+

m+p∑

t=m+1

(
yt−j − γt−jµ1 − (1− γt−j)(δ + µ1)

)

×

(
yt − µ1 − δ −

∑

i 6=j

(yt−i − γt−iµ1 − (1− γt−i(δ + µ1)

)

+
n∑

m+p+1

(
yt−j − δ − µ1

)(
yt − δ − µ1 −

∑

i 6=j

φi(yt−i − δ − µ1)

)
,

and

e(m,µ1, δ, τ) = τ

m∑

i=1

(yt−j − µ1)
2 +

m+p∑

m+1

(yt−j − γt−jµ1

− (1− γt−j)(δ + µ1))
2 +

n∑

m+p+1

(yt−j − δ − µ1)
2,

S2
4(m,φ(j), µ1, δ, τ) =

1

n− 1






yt − µ1 −

∑

i 6=j

(yt−i − µ1)




2

+


yt − µ1 − δ −

∑

i 6=j

(yt−i − γt−iµ1 − (1− γt−i)(δ + µ1)




2

+


yt − δ − µ1 −

∑

i 6=j

φi(yt−i − δ − µ1)




2
 ,

which is the Student t distribution with location parameter φ̂j(m,µ1, δ, φ
(j)), pre-

cision e(m,µ1,δ,τ)

S2
4(m,φ(j),µ1,δ,τ)

, and (n − 1) degrees of freedom.
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