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Abstract

The introduced three parameter (position p, scale ¥ and shape ) mul-
tivariate generalized Normal distribution (y-GND) is based on a strong the-
oretical background and emerged from Logarithmic Sobolev Inequalities. It
includes a number of well known distributions such as the multivariate Uni-
form, Normal, Laplace and the degenerated Dirac distributions. In this pa-
per, the cumulative distribution, the truncated distribution and the hazard
rate of the v-GND are presented. In addition, the Maximum Likelihood Es-
timation (MLE) method is discussed in both the univariate and multivariate
cases and asymptotic results are presented.
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1. INTRODUCTION

Recall the definition of the v-order generalized Normal distribution (y-GND):
The p-dimensional random variable X follows the v-GND, MY (u,X) with mean
vector 1 € RP and scale matrix 3 € RP*P| when the density function, fx, is of
the form

(1) fxlw p9) = Coldet | exp {~ 5L Qu(2) =T |,z e R,

with quadratic form Qg(z) = (z — )X Nz — ), z € RP, 6 = (u, X)) € RP*(PxP),
where the normality factor C¥ is defined as

(241 _
2) Cz;’:fpﬂ—({f“ ) (L
F(p=+1)

We denote X ~ N¥(u,X). Notice that, for v = 2, NP (u, X) is the well known
multivariate Normal distribution.

Consider now the multivariate and elliptically contoured Uniform UP(u, ),
Normal NP(u,X) and Laplace £P(u,X) distributions, as well as the degenerate
Dirac distribution DP(u). Let U, N, L and D random variables following respec-
tively UP, NP, LP and fp as above, adopting the following density functions:

3) fule) = % PR with Qu(r) <1,
(4) In(z) = mexp {-3Qo(x)}, z€eR?,

_ rég+1 / p
(5) fr(z) = mem{— p 2(96)}, z € R,
(6) folz) = { Ak <

All the above distributions are members of the v-GND family for certain values
of the shape parameter -, see [12] for details. Thus, the order value +, eventually,
“bridges” distributions with complete different shape as well as “tailing” behavior.
Indeed:

Theorem 1. The multivariate v-GND r.v. X, i.e., Xy ~ NV (u,X) with p.d.f.
Ix,, coincides for different values of the shape parameter v with the Uniform,
Normal, Laplace and Dirac distributions, as
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fo, for v=0 and p=1,2,

0, for vy=0 and p>3,
(7) Ifx, =8 Ju, for y=1,

fN? for ’7:27

fe, for v=Z£o0.

2. C.D.F. FOR THE v-GND

Recall that the cumulative distribution function (c.d.f.) of the standardized nor-
mally distributed Z ~ N (0,1) is given by

(8) (z) =5+ L1erf(%), z€R,

with erf(-) being the usual error function. For the 7-GND the generalized error
function Erf,/,_1) is involved, defined as, [1],

9) Erf,(z) := F(aTj;l)/e_tadt, z €R.

The generalized error function, can be expressed, through the lower incomplete
gamma function ¢(a,z) or the upper (complementary) incomplete gamma func-
tion I'(a, ) =T'(a) — q(a,z), in the form

(10)  Erfy(z) = L\/%)v (1,2%) = L\/‘;r) )y -ri,z2%], zeR, a>0.

Theorem 2. The c.d.f. Fx, of a~y-order normally distributed random variable
X, ~ Ny (p, 0?) is given by

(11) Fx, (z) = %+2F(L}/fr(%) Erf%{(%—l)%x_yﬁ}
1 1 et mpy et
- = 1= gy T (R E ) ven

Proof. From density function fx., as in (1), we have

Fv(x)—/wfv(t)dt—%%]exp{—jv—lw—aﬂ‘%}dt.
0 oo
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Applying the linear transformation w = t—;/i, the above is reduced to

u
19 =0} [ ep{-SHulmT} o= or,50),

where ®7 is the c.d.f. of the standardized ~-ordered Normal distribution with
Z, = %(X,Y —p) ~ Ny(0,1). Moreover, 7 can be expressed in terms of the
generalized error function. In particular

@Zw(z):C}//exp{—VT_l|w|vw_1}dw:<I>ZW(0)+C}//eXp{—VT_1|w|WW_1}dw,
%o 0

and as fz, is a symmetric density function around zero, we have

0
and thus
(=5
(19 0, () =5+ T [ ew i}
0

Substituting the normalizing factor, as in (2), and from the definition of the
generalized error function, it is

1 VT _q\ a2t
1 o =_ ol
19 22,6) =5+ sy reEmy M 1) T ) <R
2! 2!
i.e., (11) holds, while (12) formed through (10). |

It is essential for numeric calculations, to express (11) considering positive argu-
ments for Erf. Indeed, through (14), we obtain

(16) wa(x)—%zsl;g?&;ﬁ()g)mﬂ_l{(371)”71|w_0e|}, rER,

while applying (10) into (16) we obtain
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_ ldsgn(@—p) sgn(@—p) (1 1 jzop i
(17) Fx,(z) = . QP(%)F(W,W =277, zeR,

where sgn(-) is the usual sign function.
Proposition 3. The c.d.f. of the positive-ordered X ~ Ny~1(p, o?) admits the

following bounds, B(x,-), i.e.,

(18) B(x; VT‘l) < Fx, (r)<B (x; [(v—l)% r(v—l)] %—1> , T€R,

where

~y—1

(19)  B(x; k) == + sgn(z — p) <1—exp{—k‘x—;/i‘%}> T, keRy.

The inverted inequalities hold for the negative—ordered X~ ~ Ny<o(u,0?).

Proof. Applying the inequalities, [3],

T

a 1/(1 a a 1/(1
(200 T(1+7) [1 — emula)e ] < /et dt <T(1+1) [1 — vz ] :
0
where
T+, o<a<t, (1, 0<a<l,
u(a)—{ 1, a1, and v(a)_{ra(l+%)’ a1

into the definition of the generalized error function in (9) we obtain, through the
additive identity of the gamma function, that
(21)

—u(a)x® 1/a —v(a)x®
L)) [1—6 (a) ] < Brfy(r) < = T(a)I(3) [1—e (a) }

1/a

Consider now the y-order normally distributed X, ~ N (11, 02) with v € R\ [0, 1]
and let a = —15. Then, for the positive-ordered X, i.e., for v > 1, it is a > 1,
while for the negative-ordered X, it is 0 < a < 1. Therefore, defining B(z; -) as
in (19), the bounds (18) for v > 1 hold true, as (21) is applied to (16). For the
negative—ordered case of 7 < 0 the inverted bounds of (18) hold. |

Example 4. The c.d.f. of the normally distributed X ~ N(u,0?) admits the
following bounds,
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2 + 3 sgn(w —pu)\V1-— e 3(5TH)? < Fx(z) < % + %sgn(x — )1 - e—%(x—;‘i)Q’

while for the (—1)-ordered X 1 ~ N_1(u,0?), it is

T—p

2 2
—\/2|—F _9./|EZ=L
%—i—%sgn(m—u) <1 _e - |> < Fx_,(z)< %—F% sgn(z—p) (1 _ 2V |> )

As the generalized error function Erf, is defined in (10) through the upper in-
complete gamma function I'(a™?,-), series expansions can be used for a more
“numerical-oriented” form of (10). Here we present some expansions of the usual
c.d.f. of the N, family of distributions.

Corollary 5. The usual c.d.f. Fx of X ~ Nvl(,u, 02) can be expressed in the
series expansion form

3 k
(22) Fx(ac)—%Jri Z( K ) z €R.

5 K -

Proof. Adopting the series expansion form of the lower incomplete gamma func-
tion,

(23) la.) = / et = Zk.—;’; £ aaeRy,

a series expansion form of the generalized error function is extracted through

(10), i.e

a > — k a
(24) Erf,(z) = F(\Z—rrl) Z k!((kill)wk Toza € Ry
k=0

Substituting now the series expansion form of (24) into (16) we get

ky

~y—1

1 > —1)k (—)k *
FXV(x)ZE—i—(’y—l)C}/ (kll) . "’) , zeRL,

k=0

and expressing the infinite series using the integer powers k, and the fact that
sgn(z)x = |z|, x € R, we finally derive the series expansions as in (22). ]
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Corollary 6. For the negative-ordered X ~ Nv(u,a2) with v = ﬁ e R_,
n € N, n > 2, we obtain the c.d.f.’s Fx as finite series expansion, i.e.,

1+ sgn(z — p) sgn(@ —p) =t ke
(25) Fx(z)= - =y =Y zeR.
2 QeXp{n‘x—;’i|1/ }k:O k!

Proof. Applying the following known finite expansion form of the upper incom-
plete gamma function,

3
I

1
2k
&’

0

F(n,z)=(n—1)le™™ zreR, neN' =N\DO0,

b
Il

into (17) we readily get (25). ]

Example 7. For the (—1)-ordered normally distributed X_1 ~ N_1(pu,0?) we
have

1+24/|=E

zexp {2/552]
while for the (—1/2)-ordered normally distributed X_y 5 ~ N_yj5(p, 02), it is

Loyl oy (5)”

2 exp {33 ‘m—oﬂ‘}

1 +sgn(zr —p)
o 2

Fx_, () —sgn(z — p)

1+ sgn(z — )
FX71/2 (x) = f

—sgn(z — p)

Table 1 provides the probability values Fx_ (r) = Pr{X, < z}, for x = -3,
—2,...,3 for various X, ~ N, (0,1). The column for 2 = 0 is omitted as Fx_ (0) =
1/2 for every ~y value (N,(0,1) is a symmetric distribution around the mean 0).
Moreover, the last column provide also the 1st quartile points @ Xw(l /4) of X,
ie, Pr{X, < Qx,(1/4)} = 1/4 for various 7 values. For the 3rd quartile points
Qx,(3/4), it is Qx,(3/4) = —Qx, (1/4) due to the symmetric form of the v-GND
around the mean 0. These quartiles evaluated using the quantile function of X,

Qx,(P) := inf {z € R| Fx (x) > P}

(26) — sgn(2P — 1o [,Y%lr—l (77;1,\213—1\)} T, Pe(0,1),

for P = 1/4,3/4, that derived through (17). The values of the inverse upper
incomplete gamma function F_l(%l, -) were numerically calculated.
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Table 1. Probability mass values Fx. (x) for various x € R as well as the 1st quartile
points Qx_ (1/4), for certain r.v. X, ~ N,(0,1).

v Fx,(=3) Fx,(-2) Fx, (-1) Fx,/(1) Fx,(2) Fx,3) Qx,(3)
—-50 0.0260 0.0690 0.1846 0.8154 0.9310 0.9740 —0.6936
—10 0.0304 0.0742 0.1869  0.8131 0.9258 0.9696 —0.6951

-5 0.0357 0.0802 0.1895 0.8105 0.9198 0.9643 —0.6967

—2 0.0502 0.0950 0.1958 0.8042 0.9050 0.9498 —0.7004

-1 0.0699 0.1131 0.2030 0.7970 0.8869 0.9301 —0.7042

—1/2 0.0970 0.1361 0.2116 0.7884 0.8639 0.9030 —0.7082
—-1/10 0.1656 0.1889 0.2299  0.7701 0.8111 0.8344 —0.7142
1 0. 0. 0. 1. 1. 1. —0.5

2 0.0013 0.0228 0.1587 0.8413 09772 09987 —0.6745

3 0.0071 0.0402 0.1699 0.8301 0.9598 0.9929 —0.6833

4 0.0112 0.0480 0.1742 0.8258 0.9520 0.9888  —0.6865

5 0.0138 0.0523 0.1765 0.8235 0.9477 0.9862 —0.6881

10 0.0193 0.0604 0.1805 0.8195 0.9396 09807 —0.6909

50 0.0238 0.0663 0.1833 0.8167 0.9337 09762 —0.6927
+00 0.0249 0.0677 0.1839  0.8161 0.9323 0.9751 —0.6931

Figure 1 illustrates Theorem 2 with X, ~ N, (0,1) in a compact form, including
all the c.d.f. Fx_(z) for every v € [-10,0) U[1,10] and 2 € [-3,3]. The known
c.d.f. of the Uniform (y = 1) and Normal (y = 2) distributions are also de-
picted. The c.d.f. of Ny—4+10(0,1), which approximates the c.d.f. of the Laplace
distribution £(0,1) = Nis(0,1), as well as the c.d.f. of N_ggo5(0,1), which
approximates the degenerate Dirac distribution D(0), are clearly presented. No-
tice the smooth-bringing of F'y_ (x) between these significant distributions which
are included into the v-GND family of distributions for v € R U {£o0} \ (0,1).
Moreover, upon the formed surface, the quantile functions Qx_, (P) are depicted
as curves with P = 0.05,0.1,...0.95 with the 1st and 3rd quartile Qx_ (1/4) and
Qx, (3/4) distinguished.

From (1) and (12) or (17) the following holds.

Corollary 8. The hazard rate hx, = fx /(1 — Fx,) of a ~y-order normally
distributed random variable X, ~ Ny (f, o?) is given by
(25) V7 exp { 154 =22 7 )

1 =1 ,z—u 2 ?
r(5h 5 )

(27) hix, (x) =

x € R,

or

(527 exp { 254 22277 |
(28) hx, (z) = , z€R,

— — 2
1= sgn(e — g (54, 52|z 7T )
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— Qx,(p), < (0,1)
- Qx, (1/4)
— Qx,(1/2) = Med(X,)

— X _q.005 = D(0)
......... X, ~U(=1,1)
e Xy~ N(0,1)

Figure 1. Surface graph of all the c.d.f. Fx_(z) along z-axis and v-axis, where X, ~
N,(0,1) as well as the quantile functions Qx (P), P € [0,1] (surface curves).

where q(a,x) =T'(a)—T(a,z), x € R, a € R4, being the lower incomplete gamma
function.

Example 9. For the Laplace distributed random variable Y := X 100 ~ Nioo (i, 02)
= L(u,0), using the fact that q(1,2) =1 —¢€*, x € R, (28) for v — +oo, can be
written as

(29)

hy (4) = 2exp{|4E|} =1, for y<up,
A, for y>p,

which is the hazard rate of the Laplace distribution, as expected.

Figure 2 illustrates also in a compact form, the hazard rates of X, ~ N,(0,1)
for every v € [-10,0) U [1,10] and = € [—3,3]. The hazard rate of the Uniform
(v = 1) and Normal (y = 2) distributions are clearly depicted. The hazard rate
of Ny=+10(0, 1), which approximate the hazard rate of the Laplace distribution
L£(0,1) = Nioo(0,1), as well as the one of N_q g5(0,1), which approximates the
degenerate Dirac distribution D(0), are also distinguished.

The truncated v-GND can be derived through the p.d.f. and c.d.f. of a
univariate r.v. from A, (u,0?). Recall the p.d.f. fx asin (1) and c.d.f. Fy as
n (11). We shall say that X follows the right-truncated v-GND at © = p with



152 C.P. KiTsos, V.G. VassiLiADIS AND T.L. TOULIAS

Ll X_10 ~ E(O, 1)
— X_p.005 = D(0)
......... Xy ~U(=1,1)
m Xy ~ N(0,1)

2 . " \ y
= -
0 15 -

'L G
>< .
= 3

Figure 2. Surface graph of all the hazard rates hx_ (z) along z-axis and v-axis, where
X’Y ~ N’Y(O7 1)'

p.d.f. f;g when

0, if = > p,
(30)  fE@ o) =9 fx(x) Clo
Fx(p)  Fx(p

Similarly, the v~-GND r.v. X is a left-truncated v-GND r.v. at x = 7, when
(31)

e
o {2 i ash

0, if <,
fR@n={ @  Cl
1—Fx(r) 1-Fx(7)

o
exp{—-ﬁ%1 |x—;ﬁ|”*1} , if x>
The Lognormal distribution can be also nicely extended to the y-order Lognormal
distribution, or v-GLND, in the sense that if X ~ /\/:} (p, 02) then eX will follow
the v-GLND, i.e., eX ~ LN, (i, 0) is a y-order lognormally distributed r.v. The
p.d.f. of X, ~ LN (11, 0) is then given by

(32) gx, (@) = Lfiogx, (loga) = Cloa~" exp { ~25H 1822557 | e R,

as log X ~ N, (p,02).
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3. MAXIMUM LIKELIHOOD ESTIMATION

Let X = {X1, Xo,...

O, 2,7; X)
(33) = nlog CY —
3.1. Univariate case

For the univariate case NV (, 0

% log |X|

, X} be a random sample drawn from (1) with n different
values. The log-likelihood function ¢(u, %, ;

— Zlog Ix(Xi 1, %) :Z {10g cr —
i=1

X) is then given by

Llog| 3| - 252 Q(x;) ™ 1}

=1

_%2[()(@_

0
T E_l(Xi _ ,U/)] 2(v-1) |

) with known 7, it is

E(,u,a2; X) = nlogC’%—%logoj— Tl o1 Z|X ,u|ﬁ
(34) = nlog{%a_l[f’(ff;—l—i—l)]_l(ff;—l)j;_l}—
The partial derivatives are
Felino®) = o7 IZ|X Wl (X — )
(35) oS s ) (X — )7
=1
(36) g—zi(m ) = —fﬁan_li!Xi—Mi_?
61 Lot - —#ﬁai—?fyxi—mﬁ,
3)  poln’) = et e Z\X a7
3o = ZrX Wl (X - )
(39) =~k T fjsgnm—m (X — )77
i=1
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all

Y= —5,-2,—1,-05
v = —0.01 (= 0)
cop=1118 ... 18
N =2

4 =3.4,5,10,20,50

40

TPT T T T T[T T T T T T TTT

-

TT T A T I @A VT T T AT T 1T

gk b b 4 9 o9 9 9 B g g oo oo po g J o9 4 9 o ok op b B4 ¥ 4 4 9989
2 3 4 5'u

Figure 3. Graphs of the d(u; X,~) values along u € [0,5] for various v values for the
same random sample X.

For v < 0 and 7 > 2, (35) suggests that the log likelihood has m points of non-
differentiality. In general, (35) does not have an explicit solution. Nevertheless,
there are examples of estimates that can be found explicitly.

Example 10. For the Laplace distributed random variable X ~ Nioo(p,0?) =
L(p,0), the MLE of v is 1 = Med{X;}.

Example 11. For the Normal distributed random variable X ~ Na(p,0?) =
N(p,0), the MLE of pis i = 37 | X;.

Figure 3 illustrates part of the function d(y; X,v) = >0, |X; — ,u|ﬁ for a
random sample X = {X1, Xo,..., X0} and various values of . One can see
the point of non-differentiality and that as vy goes to infinity the line tends to a
polygonal one. For v < 1, from (36), we derive that £(u,0?; X) is a union of
convex curves and this suggest that maximum is at one of the X;’s.

On the other hand, (37) is always explicitly solved and the MLE of o2, when ~
is known, is given by,

2(y=1)

n ]
(40) 5% = (%Z!Xi—uw_l>

i=1
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4 =-5,-2,-1,-05
— 4 =-0.01(=0)
.............. et 10 Tl (38
_— =2

——— 4 =3,4,5,10,20,50
v = %00

TN O B A \\\\\\\\\i\\\\ \\\\l\\\\\\\\\i\\\\\\\\\i\ RN I I A A
-DZ - 0 I 2 3 4 a E'u

Figure 4. Graphs of 6%(u; X,~) along p € [0, 5] for various + values for the same random
sample X.

Figure 4 illustrates 62(u; X,7) values as in (40).
The MLE of u is asym-ptotically unbiased, see [4] and [7], and its asymptotic
variance is given by,

P W et | 2/711(%1) 52
(41) Var i = 3 (357) F(LH)U .
v
When g is unknown, Chiodi in [4] gives an unbiased estimate for the 07T which
is given by
7 .
. Zl | X —
(42) R
e 2(77—1)

and its asymptotic sampling distribution is given by

(43) flz) = 2ol

-1 1

Yo
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When p is known, Lunetta in [13] gives the asymptotic sampling distribution
AC
(44) fla) = Seat e,

i.e., a Gamma distribution with the same A and ¢ = ¢+ 1/2.
The asymptotic matrix of variance of the maximum likelihood estimators (f,
), i.e., the inverse of the Fisher’s information matrix is given by

2(=DT(-1/9) v 12
(45) T L vve el G VAL N
0 g2a=L
v
This implies, that the parameters p and o are orthogonal, according to the
Fisher’s information matrix.
If the shape parameter v is unknown, then

ol (p,0,7)
vy

n

0

- %{logﬁﬂ”ﬁ@_%)_l} - =LY X
i=1

y2o7-T £

n n
1 e e
— —2 o (logo Y X — plTT = D IX — ul7 7 log |X; —
_UMJT( g @-:1‘ i ul 2:1! i = u[7T log | X; u\)

(v

where (z) = dilog I'(z) the digamma function. It is obvious that the latter

i
can not be solved explicitly. The asymptotic variance/covariance matrix of the

MLE’s of (i, 0,7) is given by,

—1)Ir(1-1 =2
20 12(1(/«/) /7)(%) 5 r0 0
(46) I''= 0 PO (14 ) oy(y —1)34 ]
A —1
ov(y =15 A=l

where Ay = [—log(1 — %) + (2 — %)]2, B, =(2- %)W(Q - %) — 1 and ¢/(z) is
the trigamma function, [1]. This implies, that the v parameter is orthogonal to
1 but not to o, according to the Fisher’s information matrix. The proof follows
the one found in [2].

Mineo and Ruggieri in [8], has presented the useful normalp R package which
among others, contains the paramp(-) function that estimates the location param-
eter 1 and the scale parameter o by means of the maximum likelihood method,
by considering the two cases when v is known and when it is unknown. Never-
theless, when it is unknown, the estimate of p, = v/(y — 1) is obtained through
the index of kurtosis VI, [7].
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3.2. Multivariate case

For the multivariate case N7 (u, X) with known v, we obtain

(47) PE) > QM) TS (X - ),
=1
o(p, %) NS RIX 57 4 nyl
Sy = —n¥ +§R(Xz)[Q(X)]( T +2xnlol,
—13 T R(X)IQ(X)) 7D o,
=1

where R(z) = X7 (z — p)(x — n)"£7! and o being the element-wise (Hadamard)
product on matrices, see [10] and [5]. For v = 2 we obtain

RIS
(;2)——2 +ZR n oHp——ZR

with solution
n
=n" XX
i=1

and coincides with the one for the Normal distribution, [9].
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