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Abstract

The target of this paper is to provide a critical review and to enlarge the
theory related to the Generalized Normal Distributions (GND). This three
term (position, scale shape) distribution is based in a strong theoretical
background due to Logarithm Sobolev Inequalities. Moreover, the GND
is the appropriate one to support the Generalized entropy type Fisher’s
information measure.

Keywords: entropy type Fisher’s information, Shannon entropy, Normal
distribution, truncated distribution.

2010 Mathematics Subject Classification: 60E05, 62H10, 62E15.

1. Introduction

The Normal (Gaussian) distribution is the most important tool of Statistics for
both the theoretical framework and the application field sice the time that Gauss
offered it. In this section we briefly review the extensions development.

Let X be a random variable (r.v.) from the Normal distribution with mean
µ and variance σ2 > 0, X ∼ N (µ, σ2). Then it is well known that the probability
density function (p.d.f.) of X is of the form

(1) φ1(x; µ, σ) = C1
2 (σ) exp

{

−1
2Qθ(x)

}

, x ∈ R,
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with C1
2 (σ) = 1/(

√
2πσ) a constant (normalizing) factor, depending on σ and Qθ

is the quadratic form

Qθ(x) =
1
σ2 (x− µ)2, x ∈ R,

while the parameter θ = (µ, σ2) ∈ R×R
∗
+.

The computational tractability of the Normal distribution can be widely
expanded. For the pair of r.v.’s (X1,X2) = X the bivariate Normal distribution
N 2(µ,Σ) with µ = (µ1, µ2) ∈ R

2 and Σ ∈ R
2×2, such that Σ = (Σij), Σii = σ2

i ,
Σij = ρσiσj, i, j = 1, 2, is defined through the p.d.f.

(2) φ2(x1, x2) = C2
2 (σ1, σ2) exp{−1

2Qθ(x1, x2)}, (x1, x2) ∈ R
2.

The constant (normalizing) factor C2
2 (σ1, σ2) depends on the scales of X1 and

X2, i.e., σ1, σ2, and the correlation ρ = Corr(σ1, σ2), namely

(3) C2
2 (σ1, σ2) =

1

2πσ1σ2
√

1− ρ2
=

1

2π
√

|Σ|
,

Qθ(x1, x2), θ = (µ,Σ), is the quadratic form

(4) Qθ(x1, x2) =
1

2(1−ρ2)

(

z21 − 2ρz1z2 + z22
)

, (x1, x2) ∈ R
2,

where zi = (x1 − µ1)/σi, i = 1, 2. It is essential that the marginal distributions
of X are Xi ∼ N (µi, σ

2
i ), i = 1, 2, while the inverse is not true. The case ρ = 0

is equivalent to the independence of X1 and X2, while with ρ close to zero the
conditional variances of X1|X2 = x2 and X2|X1 = x1 are closed to the variances
σ1 and σ2 respectively.

The bivariate Normal distribution is an intermediate extension for the p-
variate r.v. X, i.e., for the multivariate Normal N p(µ,Σ), with µ ∈ R

p and
Σ ∈ R

p×p with dominating measure the Lebesque measure on R
p with density

(5) φp(x; µ,Σ) = Cp
2 (Σ) exp

{

−1
2Qθ(x)

}

, x ∈ R
p,

normalizing factor

(6) Cp
2 (Σ) = (2π)−p|Σ|−1/2,

and Qθ the p-quadratic form

Qθ(x):= (x− µ)Σ−1(x− µ)T,
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with θ := (µ,Σ) ∈ R
p×p×p. Notice that for the r.v. X from the p-variate Normal

and A a given p× p matrix, it holds

(7) X ∼ N p(µ,Σ) ⇒ AX ∼ N p(Aµ,AΣAT).

Following the above discussion the γ-order GND for the p-variate r.v. X, N p
γ (µ,Σ)

say, was defined as an extremal of (an Euclidean) Logarithm Sobolev Inequality
(LSI). Following [8] adopting Gross Logarithm Inequality [7], with respect to the
Gaussian weight, holds

(8)

∫

Rp

‖g‖2 log ‖g‖2dm ≤ 1
π

∫

Rp

‖∇g‖2dm,

where ‖g‖2 = 1, dm = exp{−π|x|2}dx (‖g‖2 is the norm in L 2(Rp, dm)). In-
equality (8) is equivalent to the (Euclidean) LSI,

(9)

∫

Rp

‖u‖2 log ‖u‖2dx ≤ p
2 log







2
πpe

∫

Rp

‖∇u‖2dx







,

for any function u ∈ W 1,2(Rp) with
∫

Rp |u|2dx = 1, see [8] for details. This in-
equality is is optimal with extremals u(x) Gaussians. Now, consider the extension
of Del Pino and Dolbeault in [20] for the LSI as in (9). For any u ∈ W 1,2(Rp)
with ‖u‖γ = 1, the γ-LSI holds, i.e.,

(10)

∫

Rp

‖u‖γ log ‖u‖γdx ≤ p
γ log







Kγ

∫

Rp

‖∇u‖γdx







,

with the optimal constant Kγ equals to

(11) Kγ = γ
p (

γ−1
e )γ−1π−γ/2(ξpγ)

γ/p,

where

(12) ξpγ =
Γ(p2 + 1)

Γ(pγ−1
γ + 1)

,

and Γ(·) the usual gamma function.
Inequality (10) is optimal and the equality holds when a new “hyper” mul-

tivariate Normal distribution with mean vector µ ∈ R
p×1, scale matrix Σ ∈ R

p

and a new (shape) parameter γ ∈ R\[0, 1] is considered of the form u(x) = fγ(x),
x ∈ R as

(13) fγ(x; µ,Σ) = Cp
γ(σ) exp{−γ−1

γ [Qθ(x)]
γ

2(γ−1) }, x ∈ R
p,
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with normalizing factor

(14) Cp
2 (Σ) = π−p|Σ|−1/2ξpγ(

γ−1
γ )

p γ−1
γ ,

and p-quadratic form Qθ(x) := (x−µ)Σ−1(x−µ)T, where θ := (µ,Σ) ∈ R
p×p×p.

We shall refer to the above distribution as the generalized γ-order Normal dis-

tribution, or γ-GND. Notice that with γ = 2 the γ-order Normal N P
γ (µ,Σ)

is reduced to to the usual multivariate Normal N P (µ,Σ). The elliptical con-
toured γ-GND is reduced to spherical contoured when Σ = σ2

Ip. An im-
mediate result is that the maximum density value fγ(µ) = Cp

γ . Recall that
φ1(x) = C1

2 = 1/(
√
2πσ).

One of the merits of the γ-GND defined above is that belongs to the Kotz
type distributions family, [15].

In Section 2 we provide a compact critical review of the properties of the
generalized γ-order Normal distribution considered also as a generator for other
distributions. In Section 3 information-theoretic results are obtained through the
generalized entropy type information measure, while in Section 4 a discussion is
provided.

2. On the family of the γ-GND

Recall the second-ordered Normal N p
2 , i.e., the multivariate Normal distribution

N p(µ,Σ), the multivariate Uniform Up(µ,Σ), Laplace Lp(µ,Σ), as well as the
degenerate Dirac distribution Dp(µ) with p.d.f. fU , fL, fD as follows:

fU (x) =
Γ(p2 + 1)

(πp detΣ)1/2
, x ∈ R

p, with Qθ(x) ≤ 1,(15)

fL(x) =
Γ(p2 + 1)

p!(πp detΣ)1/2
exp

{

−Q
1/2
θ (x)

}

, x ∈ R
p,(16)

fD(x) =

{

+∞, x = µ,
0, x ∈ Rp \ µ.(17)

The following Theorem states that the above distributions are members of the
γ-GND family for certain values of the shape parameter γ. This also provides
evidence that the order γ is essential as, eventually, ‘‘bridges” distributions with
complete different shape “attitude”, see Figure 1, as well as “heavy-tailness”, see
[4] for an economical example.

Let X be a random variable following N p
γ (µ, σ2

Ip). Then the “probability
mass” around µ of X with radius σ = 1, i.e., Pr{‖X−µ‖ ≤ 1} =

∫

‖X−µ‖≤1 f(x)dx
for dimensions p = 1, 2, 3 has been evaluated in Table 1 below.
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Table 1. Probability mass values for various X ∼ Nγ(µ, Ip), p = 1, 2, 3.

Pr{|X − µ| ≤ 1} Pr{‖X − µ‖ ≤ 1} Pr{‖X − µ‖ ≤ 1}
γ p = 1 p = 2 p = 3

−100 0.6315 0.8633 0.9491
−10 0.6262 0.8516 0.9392
−2 0.6084 0.8100 0.8995
−1 0.5940 0.7737 0.8603

−0.05 0.5290 0.5889 0.6233
1 1.0000 1.0000 1.0000

2 0.6827 0.9545 0.9973

5 0.6470 0.8953 0.9724
10 0.6390 0.8792 0.9614
100 0.6328 0.8669 0.9513
±∞ 0.6320 0.8660 0.9510

Theorem 1. The multivariate γ-GND N p
γ (µ,Σ) with p.d.f. fγ, coincides for

different values of γ with the Uniform, Normal, Laplace and Dirac distributions

in terms that

(18) fγ =























fD, for γ = 0 and p = 1, 2,
0, for γ = 0 and p ≥ 3,
fU , for γ = 1,
fN , for γ = 2,
fL, for γ = ±∞.

See [11].
The linear relation described in (7) for the multivariate Normal is valid for the

γ-GND, in the sense that for given A an appropriate matrix and b an appropriate
vector, then

(19) X ∼ N p
γ (µ,Σ) ⇒ AX + b ∼ N p

γ (Aµ+ b,AΣAT).

Simple calculation also proves that if the matrix A is reduced to an appropriate
vector, relation (19) is still valid.

Recall that for the univariate Normal distribution (2-GND) the cumulative
distribution function (c.d.f.) for the standardized normally distributed Z ∼
N (0, 1) is

(20) Φ(z) = 1
2 +

1
2 erf(

z
2), z ∈ R,

with erf(·) being the usual error function. For the γ-GND the generalized error
function Erfa is involved [6]. Indeed the Erfγ/(γ−1) is considered and the following
holds.
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Theorem 2. Let X be a random variable from the univariate γ-GND, i.e., X ∼
N p

γ (µ, σ2) with p.d.f. fγ. If Fγ is the c.d.f. of fγ and Φγ the c.d.f. of the

standardized Z = 1
σ (X − µ) ∼ Nγ(0, 1), then

(21) Fγ(x) = Φγ(
x−µ
σ ) = 1

2+

√
π

2Γ(γ−1
γ ) Γ( γ

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ x−µ

σ

}

, x ∈ R.

Proof. We have

Fγ(x) =

x
∫

0

fγ(t)dt =
C1

γ

σ

x
∫

−∞

exp
{

−γ−1
γ

∣

∣

x−µ
σ

∣

∣

γ
γ−1

}

dt.

Applying the linear transformation w = log t−µ
σ , the above is reduced to

(22) FXγ (x) = C1
γ

1
σ
(x−µ)
∫

−∞

exp{−γ−1
γ |w|

γ
γ−1 }dw = ΦZγ(

x−µ
σ ),

where ΦZγ is the c.d.f. of the standardized γ-ordered Normal distribution with
Zγ = 1

σ (Xγ − µ) ∼ Nγ(0, 1). Moreover, ΦZγ can be expressed in terms of the
generalized error function. In particular

ΦZγ (z) = C1
γ

z
∫

−∞

exp{−γ−1
γ |w|

γ
γ−1 }dw = ΦZγ(0) +C1

γ

z
∫

0

exp{−γ−1
γ |w|

γ
γ−1 }dw,

and as fZγ is a symmetric density function around zero, we have

ΦZγ (z) = exp
{

−γ−1
γ |w|

γ
γ−1

}

dw = 1
2 + C1

γ

z
∫

0

exp

{

−
∣

∣

∣
(γ−1

γ )
γ−1
γ w

∣

∣

∣

γ
γ−1

}

dw,

and thus

(23) ΦZγ (z) =
1
2 + C1

γ(
γ

γ−1 )
γ−1
γ

(γ−1
γ

)
γ−1
γ z

∫

0

exp
{

−u
γ

γ−1

}

du.

Substituting the normalizing factor, as in (14), we obtain

(24) ΦZγ(z) =
1
2 +

√
π

2Γ(γ−1
γ + 1)Γ(2γ−1

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ z

}

, z ∈ R,

through the definition of the generalized error function, i.e., (21) holds.
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It is interesting to notice that for X ∼ N p
γ (µ,Σ) then E(X) = µ and

CovX =
Γ
(

(p+ 2)γ−1
γ

)

Γ(pγ−1
γ )

( γ
γ−1)

2γ−1
γ (rankΣ)−1Σ,

see [11], and therefore, for the usual Normal case of the 2-GND, the scale matrix
Σ is indeed the covariance, i.e., Σ = CovX with γ = 2.

As far as the characteristic function hγ(t), t ∈ R
p is concerned for the

positive-ordered Normal r.v. X ∼ N p
γ with γ > 1, the following Theorem holds,

see [11] for details.

Theorem 3. Let hγ being the characteristic function of the multivariate γ-GND

r.v. X ∼ N p
γ (µ,Σ) with γ > 1. It is

(25) hγ(t) = const · e−itTµQ(t)−p/2φ
(

γ−1
γ Q(t)

− γ
2(γ−1)

)

, t ∈ R,

where φ(z) is an entire function of z, while

const = ( γ
γ−1 )

p γ−1
γ Cp

γ and Q(t) = tTΣ−1t.

See [11].

3. Generalized Fisher’s information measure for the γ-GND

The Normal distribution was generalized by an extra (shape) parameter γ ∈
R \ (0, 1) as introduced in Section 2. The entropy type Fisher’s information [19]
was also generalized, see [8] with an extra parameter δ. We shall refer hereafter
to the δ-GFI. We briefly describe the δ-GFI.

Let X be a multivariate r.v. with p.d.f. f on R
p×1. For the function

f : Rp×1 → R from the Sobolev space W 1,2(Rp), δ > 1 and for f1/2 ∈ W 1,2(Rp)
Fisher’s entropy type information of f , J(X) is defined by one of the relations
below

J(X) =

∫

Rp

f(x)‖∇ log f(x)‖2dx =

∫

Rp

f(x)−1‖∇f(x)‖2dx

=

∫

Rp

∇f(x) · ∇ log f(x)dx = 4

∫

Rp

‖∇
√

f(x)‖2dx,

see [8] and [9]. The δ-GFI is defined as

(26) Jδ(X) =

∫

Rp

‖∇ log f(x)‖δf(x)dx.
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It is easy then to verify that

(27) Jδ(X) =

∫

Rp

‖∇f(x)‖δf(x)1−δdx = δδ
∫

Rp

‖∇f(x)1/δ‖δdx.

For the 2-GFI case we are reduced to the usual definition of J, i.e., J2(X) = J(X).
The Blachman-Stam inequality is generalized through δ-GFI. Indeed for given

p-variate X and Y independent r.v.’s and λ ∈ (0, 1), it holds

(28) Jδ

(

λ1/δX + (1− λ)1/δY
)

≤ λJδ(X) + (1− λ)Jδ(Y ).

The equality holds with X and Y normally distributed with the same covariance
matrix, see [8].

Recall that the Shannon entropy H of a r.v. X is defined as, [21],

(29) H(X) =

∫

Rp

f(x) log f(x)dx,

and therefore the entropy power is defined

(30) N(X) = νe
2
p
H(X)

,

with ν = (2πe)−1. The extension of the entropy power, the generalized entropy
power (δ-GEP) is defined for δ ∈ R \ [0, 1], as

(31) Nδ(X) = νδe
δ
p
H(X)

,

where

(32) νδ =
(

δ−1
δe

)δ−1
π−δ/2(ξpδ )

δ/p, δ ∈ R \ [0, 1],

with ξδp as in (12). In technical applications, such as signal I/O systems, the
generalized entropy power can still be the power of the white Gaussian noise
having the same entropy. Trivially, when δ = 2, (31) is reduced to the existing
entropy power N(X), i.e., N2(X) = N(X) as ν2 = ν.

Two results are essential due to this extension, see [8].

(i) The information inequality still holds, i.e.,

(33) Jδ(X)Nδ(X) ≥ p,

(ii) The Cramér-Rao inequality is extended to

(34)
[

2πe
p VarX

]1/2 [
νδ
p Jδ(X)

]1/δ
≥ 1.
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The extended Cramér-Rao inequality (34) under the normality parameter δ = 2,
is reduced to the usual Cramér-Rao inequality form

(35) J(X)VarX ≥ p,

see [3]. Moreover, the classical entropy inequality

(36) VarX ≥ pN(X) = p
2πee

2
p
H(X)

or H(X) ≤ p
2 log{2πe

p VarX},

can be extended into the form

(37) VarX ≥ p(2πe)
δ−4
δ ν

2/δ
δ N

2/δ
δ (X) = p(2πe)

δ−2
δ ν

2/δ
δ e

4
pδ

Hδ(X)
,

through the generalized Shannon entropy Hδ. The Hδ is defined through the
generalized entropy power, i.e., Nδ(X) = ν exp{2

pHδ(X)}. Under the normality
parameter δ = 2, the inequality (37) is reduced to the usual entropy inequality
as in (36).

For the γ-GND andδ-GEP we have the following.

Theorem 4. Let X an elliptically contoured γ-GND r.v. X ∼ N p
γ (µ,Σ). It holds

(38) Nδ(X) =
(

δ−1
eδ

)δ−1
( eγ
γ−1 )

δ γ−1
γ ξpδ,γ |Σ|

δ
2p ,

where

(39) ξpδ,γ =
ξpδ
ξpγ

=
Γ
(

pγ−1
γ + 1

)

Γ
(

p δ−1
δ + 1

) .

Corollary 5. With δ = 2 it holds

(40) N(X) = 1
2e(

eγ
γ−1)

2γ−1
γ (ξpγ)

2/p|Σ|1/p,

and

(41) H(X) = log
πp/2ξpγ

√

|Σ|
(δ/e)pδ

.

Theorem 6. Let X be a spherically contoured γ-GND r.v. X ∼ N p
γ (µ, σ2

Ip).
Then it holds

(42) Jδ(X) = p
Γ
(

pp(γ−1)+δ
γ

)

Γ
(

pγ−1
γ + 1

) (γ−1
γ )

γ−δ
γ σδ,
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while the lower and upper bounds for Jδ are given by

(43) 1 < Jδ(X) ≤ Γ(p+1
2 )

Γ(p2 )

√
2 < p.

See [10] for details.

From (41) we derive that the Shannon entropy for the elliptically countered
multivariate Uniform, Normal and Laplace distributed X (i.e., for γ = 1, 2,±∞
with X ∼ N p

γ (µ,Σ) respectively) is given by

(44) H(X) =































log
πp/2

√

|Σ|
Γ
(p
2 + 1

) , X ∼ N p
1 (µ,Σ),

p log
√

2πe|Σ|, X ∼ N p
2 (µ,Σ),

log
p!eπp/2

√

|Σ|
Γ
(p
2 + 1

) , X ∼ N p
±∞(µ,Σ),

while H(X) is infinite when X ∼ N p
0 (µ,Σ) = D(µ).

Therefore, a global development can be obtained for the information theory
approach through the γ-GND development of the Section 2.

As far as the information “distance” is concerned between two γ-GND, [13]
worked through the Kullback-Leibler (K-L) measure, [16], of information (also
known as relative entropy). Recall that the K-L information KLI(f, g) between
two p-variate density functions f , g is given by

KLIpγ(f, g) =

∫

Rp

f(x) log
f(x)

g(x)
dx.

For appropriate choice of f and g taken from the spherically contoured γ-GND
family of distributions, the following results were proven, [13], presented here in
the Theorem 7 below.

Let fγ(x) and gγ(x) be the p.d.f. of Nγ(µ1, σ
2
1Ip) and Nγ(µ0, σ

2
0Ip) respec-

tively. Let us denote with

qi(x) = γ−1
γ ( 1

σi
‖x− µi‖)

γ
γ−1 , x ∈ R

p, i = 0, 1 and

Ei,j(x) =

∫

Rp

e−qi(x)qj(x)dx, x ∈ R
p, i, j = 0, 1.

Then it holds, see [13],
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Theorem 7. The K-L information measure for the γ-GND defined above, is

KLIpγ(f, g) = Cp
γσ

p
1



p log σ0
σ1

∫

Rp

eq1(x) − (E1,1 + E1,0)(x)dx



 .

When fγ and gγ are having the same location parameter, i.e., µ0 = µ1, we obtain

KLIpγ(f, g) = p log σ0
σ1

− p(γ−1
γ )

[

1− (σ1
σ0
)

γ
γ−1

]

,

while for µ0 6= µ1 and γ = 2,

KLIp2(f, g) =
p
2

[(

log
σ2
0

σ2
1

)

− 1 +
σ2
1

σ2
0
+ ‖µ1−µ0‖2

pσ2
0

]

.

The KLIp2(f, g) above provides evidence for another interesting extensions through
the γ-GND approach.

4. More extensions

We recall that there are cases (for example negative time) where a “truncation”
of the Normal distribution is needed. Such cases might be possible either for
truncation to the right or to the left. We extend this idea to the γ-GND. Let X
be a univariate r.v. from Nγ(µ, σ

2) with p.d.f. fγ as in (13) and c.d.f. Fγ as in
(21). We shall say that X follows the γ-GND truncated to the right at x = ρ
with p.d.f. fγ;ρ when

(45) fγ;ρ(x) =











0, if x > ρ,

fγ(x)

Fγ(ρ)
=

C1
γ(σ)

Φγ(
ρ−µ
σ )

exp
{

−γ−1
γ

∣

∣

x−µ
σ

∣

∣

γ
γ−1

}

, if x ≤ ρ,

Similarly, it would be truncated to the left at x = τ

(46) fγ;τ (x) =











0, if x < τ,

fγ(x)

1− Fγ(τ)
=

C1
γ(σ)

1− Φγ(
τ−µ
σ )

exp
{

−γ−1
γ

∣

∣

x−µ
σ

∣

∣

γ
γ−1

}

, if x ≥ τ,

The Lognormal distribution can be also nicely extended to the γ-order Lognormal
distribution or γ-GLND, in the sense that if X ∼ N 1

γ (µ, σ
2) then eX will follow

the γ-GLND, i.e., eX ∼ LN γ(µ, σ) with p.d.f.

(47) gγ(x) =
1
xfγ(log x) = C1

γ(σ)x
−1 exp

{

−γ−1
γ

∣

∣

∣

log x−µ
σ

∣

∣

∣

γ
γ−1

}

, x ∈ R
∗
+.
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Moreover, if X ∼ LN γ(µ, σ) then logX ∼ N 1
γ (µ, σ

2). Nice results can be also
obtained for the γ-GLND.

Interest also might be focused on the quadratic form of γ-GND. Indeed, we
state and prove the following.

Theorem 8. Let N p
γ (µ,Σ). Then the quadratic form U = XTΣ−1X follows

the generalized non-central χ2 distribution with p degrees of freedom and non-

centrality parameter λ2 = µTΣ−1µ.

Proof. The γ-GND family is a subclass of the Kotz type family of distributions
K(µ,Σ, N, r, s) for parameters N = 1, s = γ

2(γ−1) and r = γ−1
γ . Therefore, using

a result of [2], U = XTΣ−1X follows the generalized χ2 as X is a Kotz type
distributed r.v. and Theorem has been proved.

Notice that, for the trivariate case (p = 3), the p.d.f. fU of U = XTΣ−1X, can
be expressed as

fU(u) =
(γ−1

γ )
γ−1
γ

−1

2λΓ(3γ−1
γ )

[

Γ
(

a, 2γ−1
γ

)

− Γ
(

b, 2γ−1
γ

)]

,

see [18], where

a = (γ−1
γ )

γ
2(γ−1) (

√
u+ λ)

γ
γ−1 , b = (γ−1

γ )
γ

2(γ−1) (
√
u− λ)

γ
γ−1 ,

while Γ(·, ·) being the upper incomplete gamma function, [6].

5. Discussion

The Logarithm Sobolev Inequalities (LSI) [22] as well as the Poincaré Inequal-
ity (PI) [1] provide food for thought and a solid mathematical framework for
Statistics problems, especially when the Normal distribution is involved. Briefly
speaking the PI is of the form

(48) Varµ(f) ≤ cp

∫

|∇f |2dµ,

for f differentiable function on R
p with compact support while µ is an appropriate

measure. The constant cp is known as the Poincaré constant. The Sobolev
Inequality is of the form

(49) ‖s‖q ≤ cs‖∇f‖2, q = 2p
p−2 .
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The constant cs is known as the Sobolev constant. Both PI and LSI are applied
to Information Theory so that to evaluate bounds on variance, entropy, energy,
see [9, 14].

We focused on LSI and working for the appropriate constant cs, the γ-GND
was emerged, discussed in Section 1. The family of the γ-GND was presented in
a compact form. There was another attempt to generalize the univariate Normal
distribution. The density function of the form

(50) h(x) =
b

2aΓ(1/b)
exp

{

−|x−µ
a |b

}

, x ∈ R,

was the introduced extension, see [17]. This coincides with the γ-GND Nγ(µ, σ
2)

for a = bbσ and b = γ/(γ − 1). For the multivariate case see [5]. These existent
generalizations is rather technically constructed as it was not obtained through
the implementation of a strong mathematical background as the LSI.

Although a number of papers were presented on the generalized Normal we
are still investigating more extensions, see and we believe we can cover all the
possible applications extending the Normal distribution case.

One of the merits of the family of γ-GND is that includes a number of well
known distributions while the singularity of the Dirac distribution being also one
of them. Moreover, the extra parameter γ offers, in principle, different shape
approaches and therefore heavy-tailed distributions can easily obtained altering
parameter γ which effects kurtosis.

In practical problems, such as in Economics where heavy-tailed distributions
are needed [4], the γ-GND seems useful. The large positive-ordered GND’s pro-
vide heavy-tailed distributions as N p

γ (µ,Σ) approaches the multivariate Laplace
distributions, while further heavier-tailed distributions can be extracted through
the negative-ordered GND’s especially close to zero-ordered GND, i.e., close to
the Dirac case. Nevertheless, the higher the dimension gets the heavier the tails
become for all multivariate γ-GND’s unless we are considering γ-GND’s close to
the N p

1 (µ,Σ), i.e., close to the (elliptically contoured) Uniform distribution.
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