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Abstract

In the paper we deal with the problem of parameter estimation in the
linear normal mixed model with two variance components. We present so-
lutions to the problem of finding the global maximizer of the likelihood
function and to the problem of finding the global maximizer of the REML
likelihood function in this model.
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1. Introduction

The most popular strategy for computing maximum likelihood estimates of vari-
ance components in mixed linear normal models is to use numerical optimization
procedures. However, applying these methods may result in "trapping in local
maxima" of the likelihood function. The possibility of multimodality of the like-
lihood function in the linear mixed model with two variance components was
demonstrated e.g. in [6, Chapter 7].

An alternative approach to the problem of finding the global maximizer of
the likelihood function in the linear mixed model is to determine all its stationary
points. In some special cases of the linear mixed normal model with two vari-
ance components, such as the one-way classification random model, this can be
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done via finding all the real roots of a certain rational or polynomial expression,
corresponding to the model and the data vector, see [4, 3] and [6].

In this paper we deal with the problem of computing the maximum likelihood
estimate in the linear mixed normal model with two variance components in its
general form. Using the results obtained by Gnot et al. [4] we show how this
problem can be reduced to finding all the real roots of an appropriately defined
polynomial. More precisely, we show that once the real roots of this polynomial
have been computed, a finite set containing all the global maximizers of the like-
lihood function can be easily constructed (provided that the maximum likelihood
estimate in this model, for a given realization of the observation vector, exists).
We give an upper bound for the degree the mentioned polynomial. These results
are presented in Section 2. In Section 3 we describe similar results for the REML
estimation. We close the paper with concluding remarks.

1.1. Notation

For a given m×n matrix A, we will denote by A′ its transpose, by A+ its Moore-
Penrose inverse, by rank(A) its rank and by M(A) the space spanned by the
columns of A. For a given m×n matrix A1 and a given m× p matrix A2, we will
denote by [A1, A2] the partitioned m × (n + p) matrix consisting of A1 and A2.
We will write |B| for the determinant of a square matrix B, In for the identity
matrix of order n, PD(n) for the set of positive definite symmetric matrices of
order n. The n-dimensional vector having all coordinates equal to 0 we will denote
by 0

(n). The degree of a polynomial P (x) we will denote by deg(P (x)). We will
use the notation y ∼ N(µ,Σ) if the random vector y has the multivariate normal
distribution with the mean vector µ and the variance-covariance matrix Σ. For a
real-valued function f with domain S we define

argmax
x∈S

f(x) := {z ∈ S : f(z) ≥ f(x) for allx ∈ S}.

2. Computing maximum likelihood estimates of variance
components

2.1. The model and the likelihood function

Let us consider the normal linear mixed model with two variance components
N (Y,Xβ,Σ(s)), in which Y is an n× 1 normally distributed random vector with

(1) E(Y ) = Xβ, Cov(Y ) = Σ(s) = σ2
1V + σ2

2In,

where X is an n × p matrix of full rank, p < n, β is a p × 1 parameter vector,
V is an n × n non-negative definite symmetric non-zero matrix of rank k < n
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and s = (σ2
1 , σ

2
2)

′ is an unknown vector of variance components belonging to
S = {s : σ2

1 ≥ 0, σ2
2 > 0}.

The twice the log-likelihood function is given, up to an additive constant, by

(2) l0(β, s, Y ) := − log |Σ(s)| − (Y −Xβ)′Σ−1(s)(Y −Xβ).

Put

M := In −X(X ′X)−1X ′,

R(s) := (MΣ(s)M)+ = Σ−1(s)− Σ−1(s)X(X ′Σ−1(s)X)−1X ′Σ−1(s),

G0(s) := X ′Σ(s)X, β̃(s) := G−1
0 (s)X ′Σ−1(s)Y.

It can be verified that

l0(β, s, Y ) = − log |Σ(s)| − Y ′R(s)Y − (β̃(s)− β)′G0(β̃(s)− β),

so the problem of finding the maximizers of l0 in the set R
p × S can be reduced

to finding the maximizers of the function l given by

l(s, Y ) := − log |Σ(s)| − Y ′R(s)Y

in the set S, compare [10, p. 230].

For a given realization y of the observation vector Y we thus define the max-
imum likelihood estimate of s as

(3) argmax
s∈S

l(s, y).

It can be seen that the set

argmax
(β,s)∈Rp×S

l(β, s, y)

is empty if and only if the set (3) is empty. In such a case we will say that the
maximum likelihood estimate, for a given realization y of the observation vector
Y , does not exist.

The model (1) with the parameter space S can be regarded as the matrix
form of the following variance components model

(4) Y = Xβ + Zu+ ǫ,

where Z is an n×k matrix such that ZZ ′ = V , u ∼ N(0, σ2
1Ik) and ǫ ∼ N(0, σ2

2In).
A necessary and sufficient condition for the existence of the maximum likelihood
estimate in the model (4) gives the following
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Theorem 2.1 (Demidenko and Massam [2], Theorem 3.1). Let y be a given
realization of the vector Y in the model (4). The maximum likelihood estimate of
s = (σ2

1 , σ
2
2)

′ in this model exists if and only if

(5) y /∈ M([X,Z]).

Remark 2.2. Corrections to the proof of this theorem can be found in [7].

Since M(Z) = M(ZZ ′), we immediately obtain

Proposition 2.3. Let y be a given realization of the vector Y in the model (1).
The maximum likelihood estimate in this model exists if and only if

(6) y /∈ M([X,V ]).

2.2. The results obtained by Gnot et al. (2002)

Gnot et al. [4] considered the problem of computing the maximum likelihood
estimate of the vector of variance components in the model that differs from our
model in that the parameter space in their model is equal to S∗ = {s : Σ(s) ∈
PD(n), σ2

2 > 0}. We will now recall some results from this paper (they are valid
also in the case when the parameter space is equal to S).

Let B be an (n− p)× n matrix satisfying the conditions

(7) BB′ = In−p, B′B = M.

Let

(8) BVB′ =

d−1∑

i=1

miEi

be the spectral decomposition of BV B′, where m1 > . . . > md−1 > md = 0 stand
for the ordered sequence of different eigenvalues of BV B′. Let Ed be such that∑d

i=1 Ei = In−p. Let us define

(9) Ti := z′Eiz/νi, z := BY, i = 1, . . . , d,

where νi is the multiplicity of the eigenvalue mi, i = 1, . . . , d. We assume that

(10) νd > 0.

It can be checked that mi, νi and Ei, i = 1, . . . , d, don’t depend on the choice
of B in (7) [9, Remark 2.1]. Let α1 > α2 > . . . > αd0 = 0 stand for the
ordered sequence of the eigenvalues of V and let si stand for the multiplicity of
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the eigenvalue αi, i = 1, . . . , d0. Let y be a realization of the observation vector
Y . It can be shown that s = (σ2

1 , σ
2
2)

′ is a solution to the system

(11)
∂l(s, y)

∂σ2
1

= 0,
∂l(s, y)

∂σ2
2

= 0

if and only if

d−1∑

i=1

νimi

(miσ2
1 + σ2

2)
2
ti =

d0−1∑

j=1

sjαj

αjσ2
1 + σ2

2

,

d∑

i=1

νi
(miσ2

1 + σ2
2)

2
ti =

d0∑

j=1

sj
αjσ2

1 + σ2
2

,

(12)

where ti, i = 1, . . . , d, are the quantities obtained as the result of the substitution
Y = y in (9), see [4, p. 286].

Let us observe that we may reparametrize the model (1) by defining

σ2 := σ2
1 + σ2

2 , ρ :=
σ2
1

σ2
1 + σ2

2

.

Note that

(13) σ2
1 = σ2ρ, σ2

2 = σ2(1− ρ).

Let us define the algebraic expression φµ(ρ) by

φµ(ρ) := (µ− 1)ρ+ 1

and the rational algebraic expressions H1(ρ), H2(ρ) and h(ρ) by

H1(ρ) :=
d−1∑

i=1

νimi

φ2
mi

(ρ)
ti, H2(ρ) :=

d0−1∑

j=1

αjsj
φαj

(ρ)
, h(ρ) :=

H1(ρ)

H2(ρ)
.

The conditions (12), assuming that σ2
1 + σ2

2 6= 0, are equivalent to:

σ2 = h(ρ),(14)

d∑

i=1

νi
φ2
mi

(ρ)
ti = h(ρ)

d0∑

j=1

sj
φαj

(ρ)
,(15)

compare [4, p. 287]. It can be seen that if we find a solution of (15) with respect
to ρ, we will be able to compute a solution to the system (12) using (14) and (13).
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Remark 2.4. Let us observe that σ2 = σ2
1 + σ2

2 > 0 if s = (σ2
1 , σ

2
2)

′ ∈ S =
{s : σ1 ≥ 0, σ2

2 > 0}, so we will not "lose any solution" of (12) belonging to the
parameter set S if we use this new parametrization of the model (1).

2.3. Computing the maximum likelihood estimate — the polynomial
approach

After reviewing the facts from [4] we are ready to present our main results con-
cerning computing the maximum likelihood estimate of variance components in
the model (1) via finding the real roots of an appropriately defined polynomial.

Let us define the polynomials

Q1(ρ) :=

d−1∏

i=1

φ2
mi

(ρ), Q2(ρ) :=

d0−1∏

j=1

φαj
(ρ).

Let P1(ρ), P2(ρ), P3(ρ) and P4(ρ) be the polynomials obtained as the result of
simplifying the rational algebraic expressions

R1(ρ) :=

d∑

i=1

νi
φ2
mi

(ρ)
tiQ1(ρ)(1 − ρ)2, R2(ρ) :=

d0−1∑

j=1

αjsj
φαj

(ρ)
Q2(ρ),

R3(ρ) :=
d−1∑

i=1

νimi

φ2
mi

(ρ)
Q1(ρ)ti, R4(ρ) :=

d0∑

j=1

sj
φαj

(ρ)
Q2(ρ)(1 − ρ)2,

respectively. Put P (ρ) := P1(ρ)P2(ρ) − P3(ρ)P4(ρ). Let us note that if ρ0 is a
root of P (ρ) and ρ0 /∈ {m1, . . . ,md} ∪ {α1, . . . , αd0}, then ρ0 is also a solution to
the equation (15). It can be shown that

Theorem 2.5.

(a) The degree of P (ρ) is less than or equal to 2d+ d0 − 4.

(b) If the condition (6) is satisfied, then P (ρ) is a non-zero polynomial.

In order to prove this theorem we need the following

Lemma 2.6. Let us assume that for y, the given realization of the observation
vector Y , the condition (6) is satisfied. If the sequence of pairs (θj1, θ

j
2)

′, θj1 ≥ 0,

θj2 > 0, j ∈ N, satisfies the condition

(16) lim
n→∞

θn1
θn2

= ∞,

then l((θj1, θ
j
2)

′, y) → ∞ for j → ∞.
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Proof. The proof follows from the fact that l0(β, s, y) ≤ l(s, y) for β ∈ R
p, s ∈ S

and y ∈ R
n and from [7, Proposition 2.4].

Proof of Theorem 2.5. (a) This part of the theorem follows from the fact that
deg(P1(ρ)) ≤ 2d−2, deg(P2(ρ)) ≤ d0−2, deg(P3(ρ)) ≤ 2d−4 and deg(P4(ρ)) ≤ d0.

(b) It can be seen that the function L defined by L(ρ) := l(ρh(ρ), (1−ρ)h(ρ))
is differentiable on (0, 1). Let us assume that, for the given y, P (ρ) is the zero
polynomial. This implies that (ρh(ρ), (1 − ρ)h(ρ))′ is a solution to the likelihood
equations if ρ ∈ (0, 1) and L is constant on (0, 1). Now let (ρn) be a sequence
of numbers belonging to (0, 1) converging to 1. From Lemma 2.6 follows that
L(ρn) → ∞, and we have obtained a contradiction.

We are now ready to state the following

Theorem 2.7. Let us assume that the model (1) satisfies the condition (10) and
y, the given realization of the vector Y , satisfies (6). Then:

(a) The set of all solutions to the maximum likelihood equation system (12) that
belong to the parameter space S is a subset of the finite set Ψ1 constructed by:

(i) finding all the real roots of the polynomial P (ρ) that lie in the set [0, 1)\
({m1, . . . ,md} ∪ {α1, . . . , αd0});

(ii) computing solutions to (12) that correspond to the elements obtained in
(i) according to the formula (13).

(b) The maximum likelihood estimate of s, denoted by sML, is given by

sML := argmax
s∈Ψ

l(s, y),

where Ψ := (Ψ1 ∩ S) ∪ {(0, s2∗)
′},

s2∗ :=
1

n
(y −Xb)′(y −Xb),

and b stands for the ordinary least squares estimate of β.

Proof. The part (a) follows from the fact that under the assumptions of the
theorem σ2 = σ2

1 +σ2
2 is positive. To prove the part (b) it suffices to observe that

(0, s2∗)
′ is the maximum likelihood estimate of s in the model (1) with σ2

1 fixed to
0 if the assumptions of the theorem are satisfied, see [11, p. 37].
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3. Restricted Maximum Likelihood (REML) Estimation

The REML estimator of s in the model (1) is defined as the maximizer of the
likelihood function based on z := BY , where B is any matrix satisfying the
conditions (7), see [8, p. 13]. Since z ∼ N(0(n−p), BΣ(s)B′), the REML equation
system has the form

d−1∑

i=1

νimi

(miσ2
1 + σ2

2)
2
ti =

d−1∑

j=1

νjmj

mjσ2
1 + σ2

2

,

d∑

i=1

νi
(miσ2

1 + σ2
2)

2
ti =

d∑

j=1

νj
mjσ2

1 + σ2
2

,

(17)

where ti, i = 1, . . . , d, are (as in Section 2) the quantities obtained as the result of
the substitution Y = y in (9), see [4, p. 291], and y stands for a given realization
of the observation vector Y .

A necessary and sufficient condition for the existence of the REML estimate
of s in the model (1) is

(18) y /∈ M(MZ) = M(MV ),

where M and Z are as in Subsection 2.1, see [2, Theorem 3.4] and [7, Chapter 3].

Computing the REML estimate of s can be reduced to finding all the real
roots of the appropriately defined polynomial in a similar way as it was the case
with computing the maximum likelihood estimate of s. In order to construct such
a polynomial let us define the following rational algebraic expressions:

R∗
1(ρ) :=

d∑

i=1

νi
φ2
mi

(ρ)
ti

d−1∑

j=1

mjνj
φmj

(ρ)
, R∗

2(ρ) :=
d−1∑

i=1

νimi

φ2
mi

(ρ)
ti

d∑

j=1

νj
φmj

(ρ)
,(19)

Q∗
1(ρ) :=

d∏

i=1

φ2
mi

(ρ), and P ∗
0 (ρ) := (R∗

1(ρ)−R∗
2(ρ))Q

∗
1(ρ).(20)

Let us note that P ∗(ρ) can be rewritten as follows:

(21) P ∗
0 (ρ) =

d∑

i=1

d∑

j=1
i 6=j

νiνj(mj −mi)

φ2
mi

(ρ)φmj
(ρ)

tiQ
∗
1(ρ).

It can be seen that P ∗
0 (ρ) simplifies to a polynomial which we will denote by

P ∗(ρ).
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Theorem 3.1.

(a) The degree of the polynomial P ∗(ρ) does not exceed 2d− 3.

(b) If the condition (18) is satisfied, then P ∗(ρ) is a non-zero polynomial.

In order to prove this theorem we need the following

Lemma 3.2. Let us assume that for a given observation vector y the condition
(18) is satisfied. If the sequence of pairs (θj1, θ

j
2)

′, θj1 ≥ 0, θj2 > 0, j ∈ N, satisfies
the condition

(22) lim
n→∞

θn1
θn2

= ∞,

then l0(0
(n−p), (θj1, θ

j
2)

′, By) → ∞ for j → ∞.

Proof. See [7, Proposition 3.2].

Proof of Theorem 3.1. The part (a) follows immediately from the fact that
P ∗(ρ) can be presented in the form (21). The part (b) can be proved by analogy
with the proof of part (b) of Theorem 2.5 (using Lemma 3.2 instead of Lemma
2.6).

Let b denote the ordinary least squares estimate of β and let

s20 :=
1

n− p
(y −Xb)′(y −Xb).

If the condition (18) is satisfied, then s20, the mean squared estimate of σ2
2 , is also

its REML estimate in the model (1) with σ2
1 fixed to 0 [1, p. 307].

We are now ready to state the following

Theorem 3.3. Let us assume that the model (1) satisfies the condition (10) and
y, a given realization of the vector Y , satisfies the condition (18). Then:

(a) The set of all solutions to the REML equation system (17) that belong to the
parameter space S is a subset of the finite set Ξ1 constructed by:

(i) finding all the real roots of the polynomial P ∗(ρ) that lie in the set [0, 1)\
{m1, . . . ,md};

(ii) computing solutions to (17) that correspond to the elements obtained in
(i) according to the formula (13).
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(b) The REML estimate of s, denoted by sREML, is given by

sREML = argmax
s∈Ξ

l0(0
(n−p), s, By),

where Ξ := (Ξ1 ∩ S) ∪ {(0, s20)
′} and B is any matrix satisfying the condi-

tions (7).

Proof. The theorem can be proved by analogy with Theorem 2.7.

Remark 3.4. A matrix B satisfying the conditions (7) can be obtained by finding
an orthonormal basis of M(M): A matrix which columns are the vectors from
this basis satisfies the conditions (7).

4. Concluding remarks

The proposed approach to the problem of computing the maximum likelihood
estimate and the REML estimate of the vector of variance components in the
considered class of mixed linear normal models involves calculating the real roots
of a polynomial and diagonalization of real symmetric matrices. Computing the
coefficients of this polynomial within a given tolerance may pose a challenge.
To tackle this task, one can use the results from [5, Chapter 8] concerning the
error bounds for the approximate solutions to the symmetric eigenvalue problem.
Thus, it can be expected that the implementation of the methods proposed in
this work will result in obtaining reliable procedures for computing the maximum
likelihood estimate and the REML estimate of the vector of variance components
in the considered class of mixed models.
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