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1. Introduction

Classical principal component analysis (PCA) (Hotelling, 1933) was introduced as
a technique for deriving a reduced set of orthogonal linear projections of a single
collection of correlated variables X = (X1,X2, . . . ,Xp)′, where the projections
are ordered by decreasing variances. Principal component analysis is used, for
example, in lossy data compression, pattern recognition, and image analysis. In
addition to reducing dimensionality, principal component analysis can be used to
find important features of the data. Discovery in principal component analysis
takes the form of graphical displays of the principal component scores. The first
few principal component scores can reveal whether most of the data actually live
on a linear subspace of R

p, and can be used to identify outliers, distributional
peculiarities, and clusters of points. The last few principal component scores
show those linear projections of X = (X1,X2, . . . ,Xp)′ that have the smallest
variance; any principal component with zero or near-zero variance is virtually
constant, and hence can be used to detect collinearity, as well as outliers that
affect the perceived dimensionality of the data.

When we have samples originating from L groups, we would often like to
present them graphically, to see their configuration or to eliminate outlying ob-
servations. However it may be difficult to produce such a presentation even if only
three features are observed, and with a higher number of features it becomes im-
possible. A different method must therefore be sought for presenting multidimen-
sional data originating from multiple groups. To make the task easier, in the first
step every p-dimensional observation X = (X1,X2, . . . ,Xp)′ can be transformed
into a one-dimensional observation u1 = a′1X = a11X1 + a12X2 + · · · + a1pXp,
and the resulting one-dimensional observations can be presented graphically as
points on a line. In the second step we can define a second linear combination
u2 = a′2X = a21X1 + a22X2 + · · · + a2pXp not correlated with the first, and
present the observations graphically as points on a plane. Generally, the aim is
to construct new uncorrelated variables u1, u2, . . . , us, s = min(L − 1, p), which
will be linear combinations of the original observations X = (X1,X2, . . . ,Xp)′

and which will discriminate the L groups to a maximum degree; that is to say,
in the new system the centers of the L groups will be maximally spaced, and the
observations from a given group will be maximally concentrated around its cen-
ter. These new variables are called discriminant coordinates (see Seber (1984),
p. 270). They are also sometimes called canonical variates, but this name is mis-
leading, because canonical variables with completely different properties occur in
canonical correlation analysis. Another name used is ”discriminant functions” –
this is inappropriate because discriminant functions are surfaces that separate L

groups from one another. The space of discriminant coordinates is a space which
is convenient for the application of various classification methods (methods of
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discriminant analysis). In the case L = 2 we obtain only one discriminant co-
ordinate, coinciding with the well-known linear discriminant function of Fisher
(1936).

Functional principal components (FPC) and functional discriminant coordi-
nates (FDC), which are the extensions of principal components and discriminant
coordinates, respectively, from a vector domain to a functional domain, are two
very popular feature extraction methods. The functional discriminant coordi-
nates space has proven to be a very powerful space for pattern recognition. How-
ever, further study shows that there are still drawbacks in this method. One of
the major drawbacks of the functional discriminant coordinate method is that
it will lose the within-class scatter information for so-called ”small sample size”
problems because all the optimal discriminant vectors in this case are limited
to the null space of the within-class scatter matrix and this information is also
important for pattern recognition. To improve the performance of pattern recog-
nition, we propose another learning algorithm combining the advantages of FPC
and FDC. Our proposed algorithm can be divided into three steps:

1. compute the optimal discriminant vectors of FDC;

2. compute the optimal vectors of FPC;

3. use the two kinds of features for recognition.

The paper is organized as follows. In section 2, transformation of discrete data
to functional data is presented. Functional principal components are presented
in section 3. In section 4, functional discriminant coordinates are presented. The
discriminant algorithm based on a combination of features from the kernel dis-
criminant coordinates space and kernel principal components space is described
in section 5. Finally, section 6 examines the quality of the new discriminant al-
gorithm presented in this paper on real data sets, as well as statistical analysis
of the results. We conclude in section 7.

2. Transformation of discrete data to functional data

Many financial, meteorological and other data are recorded at discrete moments
in time. Let xj denote an observed value of feature X at the jth time point tj,
where j = 1, 2, . . . , J . Then our data consist of J pairs (tj, xj). This discrete
data can be smoothed by continuous functions x(t), where t ∈ I (Ramsay and
Silverman, 2005). Le I be a compact set such that tj ∈ I, for j = 1, . . . , J . Let
us assume that the function x(t) has the following representation:

(1) x(t) =
K∑

k=0

ckϕk(t), t ∈ I,
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where {ϕk} are orthonormal basis functions, and c0, c1, . . . , cK are the coefficients.
Let xxx = (x1, x2, . . . , xJ )′, ccc = (c0, c1, . . . , cK)′ and ΦΦΦ(t) be a matrix of dimen-

sion J × (K + 1) containing the values ϕk(tj), k = 0, 1, . . . ,K, j = 1, 2, . . . , J .
The coefficient ccc in (1) is estimated by the least squares method, that is, so as to
minimize the function:

S(ccc) = (xxx−ΦΦΦ(t)ccc)′ (xxx−ΦΦΦ(t)ccc) .

Differentiating S(ccc) with respect to the vector ccc, we obtain the least squares
method estimator

ĉcc =
(
ΦΦΦ′(t)ΦΦΦ(t)

)
−1

ΦΦΦ′(t)xxx.

Smoothing of the function x(t) depends on the value K (a small value of K

causes more smoothing of the data). The optimum value for K is selected using
the Bayesian information criterion BIC (see Shmueli, 2010):

BIC(x(t)) = ln

(
e′e

2

)
+ (K + 1)

(
ln J

J

)
,

where e = (e1, . . . , eJ)′, ej = xj −
∑K

b=0 ĉkϕk(tj),j = 1, 2, . . . , J .
Let us assume that there are N independent pairs of values (tij , xij), j =

1, . . . , J, i = 1, . . . , N . These discrete data are smoothed to continuous functions
in the following form:

xi(t) =

Ki∑

k=0

ĉikϕk(t), i = 1, . . . , N, t ∈ I.

Among all the K1,K2, . . . ,KN one common value of K is chosen, as the modal
value of the numbers K1,K2, . . . ,KN , and we assume that each function xi(t)
has the form

xi(t) =

K∑

k=0

ĉikϕk(t), i = 1, . . . , N, t ∈ I.

The set of functions {x1(t), . . . , xN (t)} obtained in this way is called functional
data (see Ramsay and Silverman, 2005).

3. Construction of functional principal components

Let x1(t), x2(t), . . . , xN (t) be N independent realizations of a stochastic process
X(t) with continuous parameter t ∈ I. We will further assume that E(X(t)) = 0
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and X(t) ∈ L2(I), where L2(I) is a Hilbert space of square integrable functions
on the interval I equipped with the following inner product:

< u(t), v(t) >=

∫

I

u(t)v(t)dt.

We consider the case, where the process X(t) can be represented by a finite
number of orthonormal basis functions {ϕk(t)}

X(t) =

K∑

k=0

ckϕk(t), t ∈ I,(2)

where {ck} are random variables, that E(ck) = 0, Var(ck) < ∞, k = 0, 1, . . . ,K.

Let

c = (c0, c1, . . . , cK)′

and

ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕK(t))′, 0 < K < ∞.

Then

X(t) = c′ϕ(t), t ∈ I,(3)

with E(c) = 0 and Var(c) = Σ.

In functional principal component analysis, we are interested in finding the
inner product

U =< u(t),X(t) >=

∫

I

u(t)X(t)dt

having maximal variance for all u(t) ∈ L2(I) such that < u(t), u(t) >= 1.

Let

λ1 = sup
u(t)∈L2(I)

Var(< u(t),X(t) >) = Var(< u1(t),X(t) >),

where < u1(t), u1(t) >= 1. The inner product U1 =< u1(t),X(t) > will be
called the first functional principal component, and the function u1(t) will be
called the first weight function. Subsequently we look for the second principal
component U2 =< u2(t),X(t) >, which maximizes Var(< u(t),X(t) >), is such
that < u2(t), u2(t) >= 1, and is not correlated with the first functional principal
component U1, i.e., is subject to the restriction < u1(t), u2(t) >= 0.
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In general, the kth functional principal component Uk =< uk(t),X(t) > satisfies
the conditions:

λk = sup
u(t)∈L2(I)

Var(< u(t),X(t) >) = Var(< uk(t),X(t) >),

< ui(t), uj(t) >= δij , i, j = 1, 2, . . . , k.

The expression (λk, uk(t)) will be called the kth principal system of the process
X(t).

Let us consider the principal component of the random vector c. The kth
principal component U∗

k =< uk, c > of this vector satisfies conditions:

γk = sup
u∈RK+1

Var(< u, c >) = sup
u∈RK+1

u′ Var(c)u = sup
u∈RK+1

u′Σu = u′

kΣuk,

where

u′

iuj = δij , i, j = 1, 2, . . . , k.

The expression (γk,uk) will be called the kth principal system of vector c.

Theorem 1 [Górecki, Krzyśko, 2012]. The kth principal system (λk, uk(t)) of
the stochastic process X(t) is related to the kth principal system (γk,uk) of the
random vector c by the equations:

λk = γk,

uk(t) = u′

kϕ(t),

where t ∈ I and k = 1, 2, . . . ,K + 1.

Principal components analysis for random vectors c is based on the matrix Σ. I
practice this matrix is unknown. We estimate it on the basis of N independent re-
alizations x1(t), x2(t), . . . , xN (t) of the form xi(t) = ĉ′iϕ(t) of the random process
X(t), where the vectors ĉ′i are centered, i = 1, 2, . . . , N. Let Ĉ = (ĉ1, ĉ2 . . . , ĉN )′.
Then

Σ̂ =
1

N
Ĉ

′

Ĉ.

If N > K + 1, then the matrix Σ̂ is positive definite with probability 1.
Let γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂s be non-zero eigenvalues of the matrix Σ̂, and

û1, û2, . . . , ûs the corresponding eigenvectors, where s = rank(Σ̂).
Moreover the kth principal system of the random process X(t) determined

from a sample has the following form:

(λ̂k = γ̂k, ûk(t) = û′

kϕ(t)),
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where t ∈ I and k = 1, 2, . . . , s. Hence the coordinates of the projection of the ith
realization xi(t) of the process X(t) on the kth functional principal component
are equal to:

Uik =< ûk(t), xi(t) >=< û′

kϕ(t), c′iϕ(t) >= û′

k < ϕ(t),ϕ(t) > ci = û′

kci,

where i = 1, 2 . . . , N, k = 1, 2, . . . , s.

4. Construction of functional discriminant coordinates

Suppose that we observe a sample of the stochastic process X(t) ∈ L2(I). More-
over, suppose that

E(X(t)) = 0

and

E(< X,X >) = E

[∫
X2(s)ds

]
< ∞.

Let us consider the case where the stochastic process X(t) can be represented by
a finite number of orthonormal basis functions, i.e., X(t) can be represented as:

X(t) =

K∑

k=0

ckϕk(t), t ∈ I,(4)

where {ϕk} are the first K + 1 elements of an orthonormal basis of L2(I), and
{ck} are random variables with zero means and finite variances. We adopt the
notation

ϕ(t) = (ϕ0(t), ϕ1(t), , . . . , ϕK(t))′

c = (c0, c1, . . . , cK)′,

where E(c) = 0, Var(c) = Σ > 0. The process X(t) can be written in vector
form as

X(t) = c′ϕ(t), t ∈ I.

The aim of linear discriminant analysis for functional data is to find linear func-
tionals (discriminant coordinates):

U(X) =< u,X >=

∫
u(t)X(t)dt, u ∈ L2(I)

such that the between-group variance is maximized with respect to the total
variance. The function u(t) is called the weighting function.
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We construct the first functional discriminant coordinate U1 =< u1,X >, where
the weight function u1(t) is defined by:

λ1 = sup
u∈L2(I)

VarB(< u,X >)

VarT (< u,X >)
=

VarB(< u1,X >)

VarT (< u1,X >)

subject to the constraint that

VarT (< u1,X >) = 1,(5)

where VarB(< u,X >) and VarT (< u,X >) are respectively the between-group
variance and the total variance of the inner product < u,X >. The condition
(5) is imposed to ensure the uniqueness of the discriminant coordinate (without
sign).

Proceeding analogously, we can construct the kth functional discriminant
coordinate Uk =< uk,X >, where the weight function uk(t) is defined by

λk = sup
u∈L2(I)

VarB(< u,X >)

VarT (< u,X >)
=

VarB(< uk,X >)

VarT (< uk,X >)

subject to the constraint that

VarT (< uk,X >) = 1,

and the kth functional discriminant coordinate Uk =< uk,X > is not correlated
with the first k − 1 functional discriminant coordinates {Ui =< ui,X >, i =
1, 2, . . . , k − 1}. We shall call (λk, uk) the kth discriminant configuration of X.

Let

ρk = sup
u∈RK+1

u′ VarB(c)u

u′ VarT (c)u
=

u′

k VarB(c)uk

u′

k
VarT (c)uk

subject to the constraint u′

i VarT (c)uj = δij (Kronecker delta function), i, j =
1, 2, . . . , k. We shall call (ρk,uk) the kth discriminant configuration of a random
vector c = (c0, c1, . . . , ck)′.

Theorem 2 [Górecki, Krzyśko, Waszak, 2014]. The kth discriminant configura-
tion of a random vector c defined by (ρk,uk) is related to the kth discriminant
configuration of the stochastic process X(t), (λk, uk(t)), as follows:

λk = ρk,

uk(t) = u′

kϕ(t).
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Discriminant coordinate analysis for a random process X(t) with finite basis ex-
pansion (4) is therefore equivalent to multivariate discriminant coordinate anal-
ysis of a random vector c = (c0, c1, . . . , cK)′. The N = N1 + N2 + · · · + NL

independent realizations of a random vector c can be compiled in a matrix L

with size Nl ×N , of the form:

Ĉ l =




ĉl10 ĉl11 . . . ĉl1K
ĉl20 ĉl21 . . . ĉl2K
. . . . . . . . . . . .

ĉlNl0 ĉlNl1 . . . ĉlNlK


 =




ĉ′l1
ĉ′l2
. . .

ĉ′lNl


 ,

where the ĉlrs are the coefficients estimated from the data by the least squares
method.

The vector of means

c̄l =
1

Nl

Nl∑

i=1

ĉli, l = 1, 2, . . . , L,

the between-group sum of squares matrix

V̂arB(c) = B̂ =
1

L

L∑

l=1

Nlc̄lc̄
′

l,

and the total sum of squares matrix

V̂arT (c) = T̂ =
L∑

l=1

Nl∑

i=1

ĉliĉ
′

li,

are calculated based on the whole sample of N = N1 + N2 + · · · + NL elements.

Next we find the nonzero eigenvalues λ̂k and corresponding eigenvectors ûk

of the matrix T̂
−1

B̂. The number of nonzero eigenvalues of this matrix is equal
to min(K + 1, L − 1). Having determined the eigenvectors ûk, we determine its
eigenfunctions (weight functions):

ûk(t) = û′

kϕ(t), t ∈ I.

Hence the coordinate projection of the ith realization xli(t) coming from the lth
group of the process on the kth functional discriminant coordinate is equal to

Ûlik =< ûk, xli >=

∫
ûk(t)xli(t)dt =

K∑

j=0

ûkj ĉlij = ĉ′liûk,
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where

ĉli = (ĉli0, ĉli1, . . . , ĉliK)′,

ûk = (ûk0, ûk1, , . . . , ûkK , )′,

i = 1, 2, . . . , Nl, l = 1, 2, . . . , L, k = 1, 2, . . . ,min(K + 1, L− 1).

5. A new discriminant space

Consider the (L− 1)-dimensional space of the first functional discriminant coor-
dinates. The training sample {x1(t), x2(t), , xN (t)} transformed into this space
will be denoted by {Y1, Y2, . . . , YN}, where Yi ∈ R

L−1. We then further consider
the (L − 1)-dimensional space of the first functional principal components. The
training sample transformed into this space will be denoted by {Z1, Z2, . . . , ZN},
where Zi ∈ R

L−1.

We will create a new 2(L − 1)-dimensional space determined by the first
(L− 1) functional discriminant coordinates and the first (L− 1) functional prin-
cipal components. The directional vectors determining this new space are normed
so that their length is equal to 1. The new space combines the advantages of the
space of functional discriminant coordinates and the space of functional princi-
pal components. In this space it is possible to apply a variety of classification
algorithms obtaining an improvement in classification quality.

6. Example

6.1. Experimental setup

The quality of performance of the described method was tested on the 35 different
data sets described in Table 1. The data sets originate from the UCR Time Series
Classification/Clustering Homepage (Keogh et al., 2011). The data sets originate
from a plethora of different domains, including medicine, robotics, astronomy,
biology, face recognition, handwriting recognition, etc.

The proposed method is used with the LDA classifier in the classification
process. In this case the decision was motivated by the simplicity and efficiency
of the LDA method. LDA has been proved to be effective (Lim et al., 2000)
although relying on strong assumptions. Additionally LDA is still widely used
in practice, e.g. in face recognition (Song et al., 2007), medicine (Kwak et al.,
2002), chemometrics (Cozzolino et al., 2002) and many other areas.
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Table 1. Summary of data sets.

Data set
Number of Size of Size of Time series

classes training set testing set length

50 Words 50 450 455 270

Beef 5 30 30 470

Car 4 60 60 577

CBF 3 30 900 128

CinC ECG Torso 4 40 1380 1639

Coffee 2 28 28 286

Cricket X 12 390 390 300

Cricket Y 12 390 390 300

Cricket Z 12 390 390 300

ECG Five Days 2 23 861 136

Face All 14 560 1690 131

Face Four 4 24 88 350

Faces UCR 14 200 2050 131

Gun Point 2 50 150 150

Haptics 5 155 308 1092

Inline Skate 7 100 550 1882

Italy Power Demand 2 67 1029 24

Lightning 2 2 60 61 637

Lightning 7 7 70 73 319

Mote Strain 2 20 1252 84

Non Invasive Thorax 1 42 1800 1965 750

OSU Leaf 6 200 242 427

Sony AIBO Robot Surface 2 20 601 70

Star Light Curves 3 1000 8236 1024

Swedish Leaf 15 500 625 128

Symbols 6 25 995 398

Synthetic Control 6 300 300 60

Two Patterns 4 1000 4000 128

Two Lead ECG 2 23 1139 82

u Wave Gesture Library X 8 896 3582 315

u Wave Gesture Library Y 8 896 3582 315

u Wave Gesture Library Z 8 896 3582 315

Wafer 2 1000 6174 152

Words Synonyms 25 267 638 270

Yoga 2 300 3000 426

For each data set we calculated the classification error rate on a test subset.
The optimum value for K and LDA parameters we found using only the training
subset. An appropriate distribution of the training and test sets was proposed by
the authors of the repository (each data set is divided into a training and testing
subset). For each set separately, the discrete time series were centered, and then
transformed into functions. As a base we used the Fourier orthonormal system
in the space L2([0, T ]):

ϕ0(x) =
1√
T
, ϕ2k−1(x) =

√
2√
T

sin
2πkx

T
, ϕ2k(x) =

√
2√
T

cos
2πkx

T
, k = 1, 2 . . .

6.2. Main results

The results are presented in Table 2. In the column K we have the optimum
value for K parameter (the size of the base). In the next three columns we have
absolute testing error rates for all spaces for LDA classifier.
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Table 2. Testing error rates (in %).

Data set K FPC FDC FPC+FDC

50 Words 99 74.73 69.45 69.45

Beef 73 56.67 50.00 23.33

Car 99 68.33 68.33 68.33

CBF 11 57.11 35.44 35.44

CinC ECG Torso 99 71.59 58.62 56.74

Coffee 53 46.63 7.14 0.00

Cricket X 51 63.33 58.21 58.21

Cricket Y 55 80.51 60.00 60.00

Cricket Z 51 77.95 61.54 61.54

ECG Five Days 85 50.29 49.71 48.78

Face All 61 53.02 44.26 44.26

Face Four 67 40.91 23.86 20.45

Faces UCR 59 45.46 25.56 25.56

Gun Point 47 54.67 49.33 49.33

Haptics 17 78.90 75.00 75.00

Inline Skate 99 86.36 85.64 82.36

Italy Power Demand 9 45.97 42.76 42.76

Lighting 2 99 45.90 39.34 34.43

Lighting 7 25 57.53 54.79 54.79

Mote Strain 83 25.00 25.96 20.37

Non Invasive Thorax 1 99 94.76 93.49 93.49

Osu Leaf 99 78.93 73.14 73.14

Sony AIBO Robot Surface 69 47.92 45.42 35.11

Star Light Curves 99 21.87 17.97 17.97

Swedish Leaf 45 88.80 87.20 87.20

Symbols 47 81.71 29.75 29.55

Synthetic Control 59 27.00 8.67 8.67

Two Patterns 17 60.40 12.38 12.38

Two Lead ECG 81 46.44 36.17 36.17

u Wave Gesture Library X 41 49.94 37.13 37.13

u Wave Gesture Library Y 39 50.50 42.96 42.96

u Wave Gesture Library Z 39 55.33 45.78 45.78

Wafer 41 10.79 5.34 5.34

Words Synonyms 99 77.27 76.02 76.02

Yoga 99 46.43 38.33 38.33

FPC+FDC method was the best on 10 data sets. On 25 data sets no method was
clearly better than the others, but FPC+FDC has always been among the best
methods. We can see that FPC method is by far the worst, only on one data set
(Car) it achieves the same result as the other methods, and on one data set (Mote
Strain) it achieves better result than FDC method. A graphical comparison of
methods is presented in Figure 1.

We see that the method FPC+FDC is clearly superior to FDC method.

6.3. Statistical comparison of examined methods

To find differences between the methods we present a detailed statistical com-
parison. We test the null hypothesis that all classifiers perform the same and the
observed differences are merely random. We used the Iman, Davenport (1980)
test, which is a nonparametric, based on ranks, equivalent of ANOVA. Due to
the fact that in this test the p-value is equal to 0, we can proceed with the post
hoc tests in order to detect significant pairwise differences among all the classi-
fiers. When comparing multiple algorithms, to retain an overall significance level
α, one has to adjust the value of α for each post hoc comparison. There are
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Figure 1. Comparison of test errors.

various methods for this. Garcia, Herrera (2008) explain and compare the use of
various correction algorithms. They showed that although it requires intensive
computation, the Bergmann, Hommel (1988) dynamic procedure has the highest
power. The results of multiple comparisons are given in Table 3 and Table 4.
Those methods that are connected by a sequence of stars have average ranks
that are not significantly different from one another. Finally we obtained two
homogeneous disjoint groups of methods: {FPC+FDC, FDC} and {FPC}. The
best methods are in the first group.

Table 3. p-values in the Bergmann-Hommel post hoc test.

i Hypothesis p-value

1 FPC vs. FPC+FDC 1.5 × 10−10

2 FPC vs. FDC 1.4 × 10−7

3 FDC vs. FPC+FDC 0.189

Table 4. Results of the Bergmann-Hommel post hoc test.

Procedure Ranks mean

FPC+FDC 1.37 *
FDC 1.69 *
FPC 2.94 *
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7. Conclusions

In this paper we have introduced and studied a new functional spaces convenient
for classification. We used these spaces to classify data with the LDA method.
Due to the high degree of nonlinearity, the method does not easily admit a rig-
orous theoretical analysis. However, the experiments that we have conducted
provide evidence of the power and usefulness of the proposed spaces. The new
methods adapt well to different data sets without showing signs of an overfitting.
The experiments that we have conducted justify the power and usefulness of
our methods, especially FPC+FDC. We recommend for use in the classification
process the FPC+FDC space.
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[5] T. Górecki and M. Krzyśko, Functional Principal Components Analysis, in: Data
analysis methods and its applications, J. Pociecha, R. Decker (Ed.), C.H. Beck
(2012) 71–87.
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