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Abstract

Stair nesting allows us to work with fewer observations than the most
usual form of nesting, the balanced nesting. In the case of stair nesting the
amount of information for the different factors is more evenly distributed.
This new design leads to greater economy, because we can work with fewer
observations. In this work we present the algebraic structure of the cross of
balanced nested and stair nested designs, using binary operations on com-
mutative Jordan algebras. This new cross requires fewer observations than
the usual cross balanced nested designs and it is easy to carry out inference.
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1. Introduction

In the most usual form of nesting, the balanced nesting, the number of treatments
will be

∏u
k=1 a (k), where a (k) is the number of levels for each factor. If we have

a (1) levels for the first factor, each of these levels nest a (2) levels of the second
factor and so on. In balanced nesting we are forced to divide repeatedly the plots
and we have few degrees of freedom for the first levels, see for instance Khuri et
al. (1998).

In stair nesting we have a• (1) “active” levels for the first factor, combined
with a single level of all the other factors. Then a new single level for the first
factor, combined with a• (2) new “active” levels of the second factor, combined
with a single level of all the other factors and so on. The number of treatments will
then be

∑u
k=1 a

• (k) = [a (1)− (u− 1)] +
∑u

k=2 a (k) instead of
∏u

k=1 a (k) which
we would have with balanced nesting. Thus this model leads to a greater economy,
because we can work with fewer observations, and the amount of information for
the different factors is more evenly distributed, see Fernandes et al. (2010, 2012).
Moreover it is easy to carry out inference since this new design is very similar to
the usual cross of balanced nested designs, that is already well studied.

In our approach we use binary operations on commutative Jordan algebras,
CJA, to study models obtained from simpler ones, through crossing and nesting.
In the study of the algebraic structure of balanced nesting we use the restricted
Kronecker product of CJA and in the study of the algebraic structure of stair
nesting we use the cartesian product of CJA. To study models obtained by cross-
ing we use the Kronecker product of CJA. In Section 2 we present results on
CJA and these binary operations. In Section 3 we present the algebraic structure
for the cross of balanced nested and stair nested designs. In Section 4 we show
how to carry out inference for these models obtained by crossing. In Section 5
we present an application to compare both studies, the cross of balanced nesting
and the cross of balanced nesting and stair nesting.

2. Commutative Jordan algebras

Jordan algebras were introduced by Jordan et al. (1934) while presenting a
new formulation of Quantum Mechanics. Later on Jacobson (1968) published a
book where he gave a comprehensive account of the structure and representa-
tion theory of Jordan algebras. It covers foundation material, structure theory
and representation theory for Jordan algebras. Later they were rediscovered by
Seely (1970a, 1970b, 1971) who used these structures in linear statistical infer-
ence. Seely (1970a, 1970b) called these structures quadratic spaces since they
were linear spaces constituted by symmetric matrices that commute and contain-
ing the squares of their matrices, but for priority sake we name them as CJA.
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Every commutative Jordan algebra A has one and only one basis, the principal
basis pb (A), constituted by pairwise orthogonal orthogonal projection matrices,
POOPM, see Seely (1971). If the sum of the matrices in pb (A) is the identity
matrix, we say that A is complete.

Since the matrices in pb (A) are idempotent and pairwise orthogonal, any
projection matrix belonging to A is idempotent, so it will be the sum of all or
part of the matrices in pb (A). The rank of an orthogonal projection matrix
will be the sum of the ranks of those matrices in pb (A) whose sum is that
matrix. Thus an orthogonal projection matrix with rank 1 will belong to pb (A)
whenever it belongs to A. With 1n the vector with n components equal to 1
and Jn = 1n (1n)′, 1

n
Jn will be an orthogonal projection matrix with rank 1,

belonging to pb (A) whenever it belongs to A, where B′ is the transpose matrix
of B. We say that a CJA of n× n matrices is regular when 1

n
Jn belongs to A.

If pb (A) is constituted by matrices Q1, . . . ,Qu and the row vectors of Aj

constitute an orthogonal basis for the range space R (Qj) of Qj, j = 1, . . . , u, we

put pb (A)
1
2 = {A1, . . . ,Au}. We then have, for j = 1, . . . , u,





AjA
′
j = Igj

A′
jAj = Qj

,

with gj = rank (Qj), and Is the s × s identity matrix. Moreover since the
Q1, . . . ,Qu are pairwise orthogonal matrices we will have AjA

′
j′ = 0gj×gj′

, with
j 6= j′, where 0r×s is the r × s null matrix.

Given M, a regular matrix belonging to A, we have M =
∑u

j=1mjQj, with
Q1, . . . ,Qu the matrices in pb (A). Since Q1, . . . ,Qu are POOPM we will have

M−1 =
u∑

j=1

m−1
j Qj .

Moreover, for j = 1, . . . , u, if Qj = A′
jAj we will have M =

∑u
j=1mjA

′
jAj, so

the row vectors of Aj will be the eigenvectors of M associated to the eigenvalues
mj with multiplicity gj = rank (Aj) = rank (Qj) and so

det (M) =

u∏

j=1

m
gj
j .

Three interesting binary operations have been defined in CJA, see Fernandes et
al. (2010) and Fonseca et al. (2006). In our approach is of greater interest to
know the principal basis of the CJA.

The first operation is the Kronecker product represented by ⊗, and is useful
to study models obtained by crossing the treatments of two former models. Given
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the families of matrices V1 and V2, V1⊗V2 will be the family of matrices G1⊗G2

with Gd ∈ Vd, d = 1, 2. If A1 and A2 are CJA the principal basis of A1⊗A2 will
be

pb (A1 ⊗A2) = pb (A1)⊗ pb (A2) .

These results can be generalized to more than two CJA.

The second operation is the restricted Kronecker product represented by ∗,
and is useful to study models obtained by nesting all the treatments of one of
these models within each treatment of the other. We use this operation in the
study of models obtained by usual nesting. Let A1 and A2 be two CJA of n1×n1

and n2 × n2 matrices, respectively. If pb (Al) = {Ql,0, . . . ,Ql,ul
}, l = 1, 2, the

principal basis of A1 ∗ A2 will be

pb (A1 ∗ A2) = {Q1,0 ⊗Q2,0, . . . ,Q1,u1 ⊗Q2,0} ∪

∪
{

u1∑

i=0

Q1,i ⊗Q2,1, . . . ,

u1∑

i=0

Q1,i ⊗Q2,u2

}
.

These results can be generalized to more than two CJA.

The third operation is the cartesian product represented by×, and we use this
operation in the study of models obtained by stair nesting. Let D (B1, . . . ,Bu)
be the block-wise diagonal matrix with principal blocks B1, . . . , Bu. Given the
CJA A1, . . . ,Au, their cartesian product, ×u

h=1Ah, will be the set of the diagonal
block-wise matrix D (M1, . . . ,Mu) with Mh ∈ Ah, h = 1, . . . , u.

Let Ah be commutative Jordan algebra constituted by ah×ah matrices with
principal basis Qh = {Qh,1, . . . ,Qh,vh}. Then the principal basis of the cartesian
product of commutative Jordan algebras, ×u

h=1Ah, will be
⋃u

h=1Qa,h, whereQa,h

is the family of the diagonal block-wise matrices D (B1, . . . ,Bu), with Bh′ =
0ah′×ah′

, if h′ 6= h, and Bh ∈ Qh, with h = 1, . . . , u.

3. Model

In this design we consider L groups with u1, . . . , uL factors in each group, re-
spectively, and r replicates. In the first sth groups we have balanced nest-
ing and in the other groups we have stair nesting. In each group in which
we have balanced nesting we have ai (1) , . . . , ai (ui), with i = 1, . . . , s, lev-
els for each factor and in each group in which we have stair nesting we have
aj (1) , . . . , aj (uj), with j = s + 1, . . . , L, “active” levels for each factor. So
we have ni =

∏ui

k=1 ai (k), with i = 1, . . . , s, treatments in the ith group and
nj =

∑uj

k=1 aj (k), with j = s+1, . . . , L, treatments in the jth group. Finally, we
have n = (n1 × . . . ns−1 × ns × ns+1 × . . . × nL)× r observations.
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If we consider the intervenient factors, the parameters will be:

• the general mean value;

• the effects of the different factors;

• the interactions between levels of factors in distinct groups.

These parameters will be associated to the h = (h1, . . . , hL) vectors of

Γ = {h : 0 ≤ hl ≤ ul, l = 1, . . . , L} .

If all components of h are null, the vector corresponds to general mean value; if
h has only one non-null component, the vector corresponds to the effects of the
factor indicated by that component; otherwise h will be the vector associated to
the interactions between the factors indicated by the non-null components of h.

Now we will present the structure for the s groups with balanced nesting. For
the ith group, with i = 1, . . . , s, the first factor will have ai (1) levels. If ui > 1,
each level of the first factor nests ai (2) levels of the second factor and so on. So
we will have ci (k) =

∏k
m=1 ai (m) level combinations for the k first factors, with

k = 1, . . . , ui. Each of these combinations nest bi (k) =
ci(ui)
ci(k)

, with k = 1, . . . , ui,

level combinations of the following factors. Finally we have ni = ci (ui) level
combinations.

The model can be written in its canonical form as

yi =

ui∑

k=0

Ai (k)
′
η̃i (k) ,

where vectors η̃i (k) = Ai (k)yi correspond to the effects of the factors. Matrices
Ai (k) are defined as

Ai (0) =

ui⊗

k=1

1√
ai (k)

(
1ai(k)

)′

and

Ai (k) =

[
k−1⊗

m=0

Iai(m)

]
⊗Tai(k) ⊗

[
ui⊗

m=k+1

1√
ai (m)

(
1ai(m)

)′
]
,

where i = 1, . . . , s, ai (0) = 1, k = 1, . . . , ui,
⊗p

m=p+q Pm = I1, q > 0 and

T1 = I1. Matrix Tv is obtained deleting the first row equal to 1√
v
(1v)′ of a v× v

orthogonal matrix and T′
vTv = Iv − 1

v
Jv. We thus have

gi (k) = rank [Ai (k)] = [ai (k)− 1]

k−1∏

m=0

ai (m) .
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We assume that the observations vector yi has mean vector

µ =
1√
ni

(1ni)′ µ

and variance-covariance matrix

Vi =

ui∑

k=1

γi (k)Qi (k) ,

where Qi (k) = Ai (k)
′
Ai (k) and γi (k) =

∑ui

l=k bi (l)σ
2
i (l), with k = 1, . . . , ui.

The principal basis of the CJA associated to the balanced nesting,

pb
[
∗ui

k=1A (ai (k))
]
,

is constituted by matrices Qi (k), with i = 1, . . . , s.

Now we will present the structure for the L− s remaining groups with stair
nesting. For the jth group, with j = s + 1, . . . , L, we have aj (1) “active” levels
for the first factor, combined with a single level of all other factors; then a new
single level for the first factor, combined with aj (2) new “active” levels of the
second factor, combined with a single level of all other factors; and so on. So
we will have cj (k) = (uj − k) +

∑k
m=1 aj (m) level combinations for the k first

factors, with k = 1, . . . , uj .

We assume that the observations vector yj is normal with mean vector µ and
variance-covariance matrix Vj . For z = 1, 2 and k = 1, . . . , uj , the

η̃j,z (k) = Aj,z (k)yj

will be normal with mean vectors ηj,z (k) = Aj,z (k)µj and variance-covariance
matrices γj,z (k) Igj,z(k).

For k = 1, . . . , uj , matrices Aj,z (k) are defined as





Aj,1 (k) = D
(
C1,1 (k) , . . . ,C1,uj

(k)
)

Aj,2 (k) = D
(
C2,1 (k) , . . . ,C2,uj

(k)
)
,

with 



C1,k∗ (k) = C2,k∗ (k) = [0aj (k∗)]′ , k 6= k∗

C1,k (k) =
1√
aj(k)

[
1aj(k)

]′

C2,k (k) = Taj(k) .
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We thus have 



gj,1 (k) = rank [Aj,1 (k)] = 1

gj,2 (k) = rank [Aj,2 (k)] = aj (k)− 1 ,

for k = 1, . . . , uj .

Moreover the observations vector yj has mean vector µj = 1njµ and variance-
covariance matrix

Vj =

uj∑

k=1

2∑

z=1

γj,z (k)Qj,z (k) ,

where 



γj,1 (h) =

k−1∑

m=1

aj (m) σ2
j (m) +

uj∑

m=k

σ2
j (m)

γj,2 (k) =

uj∑

m=h

σ2
j (m)

and Qj,z (k) = Aj,z (k)
′
Aj,z (k), with z = 1, 2.

The principal basis of the CJA associated to the stair nesting,

pb
[
×uj

k=1A (aj (k))
]
,

is constituted by matrices Qj,z (k), with j = s+ 1, . . . , L and z = 1, 2.

When we cross these L groups we obtain the model in its canonical form as

y =
∑

h∈Γ
A (h)′ η (h) +A⊥e,

with

A (h) = A (1,h) ⊗A (2,h) ⊗ 1√
r
(1r)′ .

Matrices A (h) are obtained as follows:

• if all components of h are null, for the first s components we have

A (1,h) =
s⊗

i=1

Ai (0)

and for the L− s remaining components we have

A (2,h) =

L⊗

j=s+1

( uj∑

m=1

Aj,1 (m)

)
.
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• if in the first s components of h we have a single non-null component and
the L− s remaining components are null we put

A (1,h) =

(
l−1⊗

i=1

Ai (0)

)
⊗Al (k)⊗

(
s⊗

i=l+1

Ai (0)

)
,

with k = 1, . . . , ul, and

A (2,h) =
L⊗

j=s+1

( uj∑

m=1

Aj,1 (m)

)
.

• if the first s components of h are null component and in the L−s remaining
components we have a single non-null component we put

A (1,h) =

s⊗

i=1

Ai (0)

and

A (2,h) =




f⊗

j=s+1

(
uj∑

m=1

Aj,1 (m)

)
⊗Af,2 (t)⊗




L⊗

j=f+1

(
uj∑

m=1

Aj,1 (m)

)
 ,

with t = 1, . . . , uf .

• if in the first s components of h we have a single non-null component and in
the L− s remaining components we have too a single non-null component
we put

A (1,h) =

(
l−1⊗

i=1

Ai (0)

)
⊗Al (k)⊗

(
s⊗

i=l+1

Ai (0)

)
,

with k = 1, . . . , ul, and

A (2,h) =




f⊗

j=s+1

(
uj∑

m=1

Aj,1 (m)

)
⊗Af,2 (t)⊗




L⊗

j=f+1

(
uj∑

m=1

Aj,1 (m)

)
 ,

with t = 1, . . . , uf .

If we have more than two non-null components in h, we obtain matrices A (h)
proceeding in the same way as we did for the interaction between two factors.
Matrix A⊥ is defined as

A⊥ = In ⊗Tr.
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The principal basis of the CJA associated to the cross of balanced nesting and
stair nesting,

pb



[

s⊗

i=1

(
∗ui

k=1A (ai (k))
)
]
⊗




L⊗

j=s+1

(
×uj

k=1A (aj (k))
)





is constituted by matrices Q (h) = A (h)′ A (h), h ∈ Γ.

4. Inference

We consider that the model has random effects and we assume that vector y is
normal with mean vector µ and variance-covariance matrix

V =
∑

h∈Γ
γ (h)Q (h) + σ2Q⊥,

with 



Q (h) = A (h)′A (h)

Q⊥ =
(
A⊥)′A⊥ .

We put y ∼ N (µ,V). So we have





η̃ (h) = A (h)y

η̃⊥ = A⊥y ,

where 



η̃ (h) ∼ N
[
0, γ (h) Ig(h)

]

η̃⊥ ∼ N
[
0, σ2Ig

]
,

with g (h) = rank [A (h)], g = rank
[
A⊥] and

γ (h) = σ2 +
∑

k:h≤k

σ2 (k) , k ∈ Γ.

We have the sums of squares

S (h) = ‖A (h)y‖2 ∼ γ (h)χ2
g(h), h ∈ Γ
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and

S =
wwwA⊥y

www
2
∼ σ2χ2

g.

Thus we have the unbiased estimators

γ̃ (h) =
S (h)

g (h)

and

σ̃2 =
S

g
.

Then we can obtain the unbiased estimators for the variance components

σ̃2 (k) =
∑

h∈Θ(k)

(−1)n(k,h) γ̃ (h) ,

with n (k,h) the number of components of k lesser than homologous components
of h and

Θ (k) = {h : kl ≤ hl ≤ min {ul; kl + 1} , l = 1, 2} .
Furthermore we have





det [V] =
∏

h∈Γ
[γ (h)]g(h)

(
σ2
)g⊥

V−1 =
∑

h∈Γ
γ−1 (h)Q (h) +

1

σ2
Q⊥ .

The normal density of y will be

n (y) =

exp

[
−1

2

(
‖A(0)y−A(0)µ‖2

γ(0) +
∑

h∈Γ\{0}

S(h)
γ(h) +

S
g

)]

(2π)
n
2
∏
h∈Γ

[γ (h)]
g(h)
2 (σ2)

g⊥

2

.

Using the factorization theorem we see that η̃ (0) = A (0)y, S (h), with h ∈
Γ \ {0}, and S are sufficient statistics. According to the Rao-Blackwell theorem
estimators should, as we have previously shown, be function of the sufficient
statistics.

5. Application

The problem of genetic homogeneity of the grapevine castes is of great practical
interest. We will consider an experiment to test the genetic homogeneity. The
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grapevines are produced through cloning. Clones with a possible common ances-
tor constitute a caste. Although the castes should be genetically homogeneous,
some farmers consider that this is not always true.

Now we will discuss the results of an experiment in which two groups of
three clones, obtained in different regions for “Touriga Nacional” were cultivated
jointly. In this experiment we use a model with four random factors, the location
inside the field, the degree of humidity on the ground, the origin of the plants
and the clone. We consider three replicates. The grapevines were planted in a
rectangular grid and in each row of the grid a clone was planted. The production
in kilos per grapevine are presented in Table 1.

In this work we intend to compare two studies, firstly the cross of balanced
nesting, see for instance Fonseca et al. (2003, 2006), and secondly the cross
balanced and stair nesting, that we present in this work.

Table 1. Production in kg per plant.

L 1 L 2
H 1 H 2 H 3 H 4 H 5 H 1 H 2 H 3 H 4 H 5
3,00 1,85 0,75 1,35 1,45 1,80 0,70 2,50 1,70 0,40

C 1 2,85 1,75 0,90 1,40 1,40 1,85 0,75 2,55 1,75 0,50
3,05 1,90 0,85 1,30 1,50 1,90 0,80 2,65 1,80 0,45
1,00 1,10 1,00 1,60 1,50 1,60 1,75 0,50 1,35 1,10

O 1 C 2 1,15 1,20 1,05 1,65 1,55 1,50 1,70 0,55 1,30 1,15
0,95 0,95 1,10 1,50 1,60 1,55 1,75 0,60 1,40 1,20
1,10 1,50 1,80 1,45 1,25 0,85 0,65 0,55 0,90 0,90

C 3 1,05 1,55 1,85 1,50 1,20 0,90 0,60 0,45 0,95 0,95
1,10 1,60 1,70 1,55 1,35 0,95 0,55 0,60 1,00 1,00
1,75 3,50 2,50 2,00 0,65 2,00 3,00 2,55 3,00 2,65

C 1 1,80 3,45 2,55 2,10 0,70 2,05 3,05 2,50 3,05 2,60
1,70 3,40 2,60 2,15 0,55 2,00 2,95 2,45 2,90 2,55
1,10 1,05 0,50 1,05 1,25 1,20 1,35 1,20 0,30 2,50

O 2 C 2 1,15 1,00 0,60 1,00 1,30 1,25 1,30 1,30 0,40 2,55
1,00 1,05 0,65 1,10 1,35 1,35 1,25 1,40 0,45 2,60
1,05 1,25 2,00 1,50 2,10 1,00 2,70 2,15 2,10 2,70

C 3 1,00 1,20 2,05 1,60 2,05 0,90 2,60 2,00 2,00 2,75
1,10 1,35 2,20 1,65 2,00 1,05 2,55 2,10 2,05 2,80

We consider that when we have a cross of balanced nesting we will have 3× 5×
2 × 3 = 90 treatments. On one side we have the origin, O, with two levels, that
nest the clone, C, with three levels. On the other side we have the localization
on the field, L, with three levels, that nest the degree of humidity, H, with five
levels. Finally we have three replicates for each combination of factors. The
number of levels for the different factores are a1 (1) = 2 and a1 (2) = 3 levels for
the first group, and a2 (1) = 3 and a2 (2) = 5 levels for the second group. We
have n1 = 2×3 = 6 treatments in the first group and n2 = 3×5 = 15 treatments
in the second group. So we have n = n1×n2× r = 6×15×3 = 270 observations.
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The parameters of the model will be associated to the h = (h1, h2) vectors of
Γ = {h : 0 ≤ hl ≤ ul, l = 1, 2}.

For the first group we have matrices A1 (h), with h = 1, 2, defined by





A1 (0) =
1√
2

[
12
]′ ⊗ 1√

3

[
13
]′

A1 (1) = T2 ⊗ 1√
3

[
13
]′

A1 (2) = I2 ⊗T3 ,

with

T2 =
[ √

2
2 −

√
2
2

]

and

T3 =

[
2
√
6

6 −
√
6
6 −

√
6
6

0
√
2
2 −

√
2
2

]
.

For the second group we have matrices A2 (h), with h = 1, 2, defined by





A2 (0) =
1√
3

[
13
]′ ⊗ 1√

5

[
15
]′

A2 (1) = T3 ⊗ 1√
5

[
15
]′

A2 (2) = I3 ⊗T5 ,

with

T5 =




2
√
5

5 −
√
5

10 −
√
5

10 −
√
5

10 −
√
5

10

0
√
3
2 −

√
3
6 −

√
3
6 −

√
3
6

0 0
√
6
3 −

√
6
6 −

√
6
6

0 0 0
√
2
2 −

√
2
2


 .

When we cross both groups we obtain the model in its canonical form as

y =
∑

h∈Γ
A (h)′ η (h) +A⊥e,

where matrices A (h) are defined as

A (h) = A (h1, h2) = A1 (h1)⊗A2 (h2) ,
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with h1 = 0, 1, 2 and h2 = 0, 1, 2. Matrix A⊥ is given by

A⊥ = I90 ⊗T3.

In Tables 2 and 3 we present the results for the cross of balanced nesting.

Table 2. Production in kg per plant.

L 3
H 1 H 2 H 3 H 4 H 5
1,05 1,50 1,15 0,85 1,15

C 1 1,10 1,60 1,20 0,70 1,10
1,15 1,45 1,10 0,95 1,05
0,75 0,65 0,90 0,85 1,05

O 1 C 2 0,80 0,60 0,95 0,95 1,10
0,95 0,75 1,10 1,00 1,15
0,90 0,90 0,55 0,70 0,35

C 3 0,95 0,95 0,75 0,80 0,45
0,90 1,05 0,60 0,65 0,40
1,60 3,05 0,25 1,65 2,65

C 1 1,65 3,00 0,35 1,70 2,50
1,60 2,95 0,40 1,75 2,70
1,05 1,95 2,00 2,20 2,35

O 2 C 2 1,10 1,90 2,05 2,30 2,40
1,15 2,00 2,15 2,15 2,45
1,60 1,10 2,05 1,50 3,00

C 3 1,65 1,15 2,20 1,60 2,90
1,75 1,25 1,95 1,65 3,15

Table 3. Results for the cross of balanced nesting.

h S (h) g (h) γ̃ (h)

(1, 0) 0,0073 1 0,0073
(2, 0) 4,3498 4 1,0875
(0, 1) 0,1075 2 0,0538
(0, 2) 21,1211 12 1,7601
(1, 1) 3,7048 2 1,8524
(1, 2) 24,0568 12 2,0047
(2, 1) 7,9815 8 0,9977
(2, 2) 81,6798 48 1,7017

The variances for the estimators are given by

Var [γ̃ (h)] = Var

[
S (h)

g (h)

]
=

2γ2 (h)

g (h)
.
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So Ṽar [γ̃ (h)] = 2γ̃2(h)
g(h) and we have





Ṽar [γ̃ (1, 0)] = 0, 0001054

Ṽar [γ̃ (2, 0)] = 0, 5912780

Ṽar [γ̃ (0, 1)] = 0, 0028871

Ṽar [γ̃ (0, 2)] = 0, 5163180

Ṽar [γ̃ (1, 1)] = 3, 4313800

Ṽar [γ̃ (1, 2)] = 0, 6698280

Ṽar [γ̃ (2, 1)] = 0, 2488460

Ṽar [γ̃ (2, 2)] = 0, 1206520

Ṽar
[
σ̃2
]
= 0, 0000002 .

Now we will study the cross between two groups in which, in the first group we
have a balanced nested design, and in the second group we have a stair nested
design. So we have L = 2 groups with u1 = 2 and u2 = 2 factors in each group
and r = 3 replicates. In the first group we have balanced nesting with two factors,
the origin, O, and the clone, C, and in the second group we have stair nesting
with two factors, the localization in the field, L, and the degree of humidity, H.
The number of levels for the different factors are a1 (1) = 2 and a1 (2) = 3 levels
for the first group, and a2 (1) = 2 and a2 (2) = 5 “active” levels for the second
group. We have n1 = 2× 3 = 6 treatments in the first group and n2 = 2 + 5 = 7
treatments in the second group. So we have n = n1 × n2 × r = 6× 7× 3 = 126
observations. The chosen observations are presented in Table 4.

Table 4. Results for the cross of balanced nesting.

S g σ̃2

0,8683 180 0,0048

The parameters of the model will be associated to the h = (h1, h2) vectors of
Γ = {h : 0 ≤ hl ≤ ul, l = 1, 2}.

For the first group we have matrices A1 (k), with k = 1, 2, defined by





A1 (0) =
1√
2

[
12
]′ ⊗ 1√

3

[
13
]′

A1 (1) = T2 ⊗ 1√
3

[
13
]′

A1 (2) = I2 ⊗T3 .
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For the second group we have matrices A2,z (k), with k = 1, 2 and z = 1, 2,
defined by 




A2,1 (1) = D

([
1√
2
12
]′
,
[
05
]′
)

A2,2 (1) = D
(
T2,

[
05
]′)

A2,1 (2) = D

([
02
]′
,
[

1√
5
15
]′)

A2,2 (2) = D
([

02
]′
,T5

)
.

When we cross the both groups we obtain the model in its canonical form as

y =
∑

h∈Γ
A (h)′ η (h) +A⊥e,

where matrices A (h) are defined as





A (0, 0) = A1 (0, 1) +A1 (0, 2)

A (i, 0) = A1 (i, 1) +A1 (i, 2) i = 1, 2

A (0, l) = A2 (0, l) l = 1, 2

A (i, 1) = A2 (i, 1) i = 1, 2

A (i, 2) = A2 (i, 2) i = 1, 2 ,

with matrices

Az (k1, k2) = A1 (k1)⊗A2,z (k2)⊗
1√
3

(
13
)′
,

for z = 1, 2, k1 = 0, 1, 2 and k2 = 1, 2. Matrix A⊥ is given by

A⊥ = I42 ⊗T3.

In Tables 5 and 6 we present the results for the cross of balanced nesting and
stair nesting.

The variances of these estimators are given by

Var [γ̃ (h)] = Var

[
S (h)

g (h)

]
=

2γ2 (h)

g (h)
.
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Table 5. Production in kg per plant.

L 1 L 2
H 1 H 2 H 3 H 4 H 5 H 1 H 2 H 3 H 4 H 5
3,00 1,85 0,75 1,35 1,45 0,70

C 1 2,85 1,75 0,90 1,40 1,40 0,75
3,05 1,90 0,85 1,30 1,50 0,80
1,00 1,10 1,00 1,60 1,50 1,75

O 1 C 2 1,15 1,20 1,05 1,65 1,55 1,70
0,95 0,95 1,10 1,50 1,60 1,75
1,10 1,50 1,80 1,45 1,25 0,65

C 3 1,05 1,55 1,85 1,50 1,20 0,60
1,10 1,60 1,70 1,55 1,35 0,55
1,75 3,50 2,50 2,00 0,65 3,00

C 1 1,80 3,45 2,55 2,10 0,70 3,05
1,70 3,40 2,60 2,15 0,55 2,95
1,10 1,05 0,50 1,05 1,25 1,35

O 2 C 2 1,15 1,00 0,60 1,00 1,30 1,30
1,00 1,05 0,65 1,10 1,35 1,25
1,05 1,25 2,00 1,50 2,10 2,70

C 3 1,00 1,20 2,05 1,60 2,05 2,60
1,10 1,35 2,20 1,65 2,00 2,55

Table 6. Production in kg per plant.

L 3
H 1 H 2 H 3 H 4 H 5
1,05

C 1 1,10
1,15
0,75

O 1 C 2 0,80
0,95
0,90

C 3 0,95
0,90
1,60

C 1 1,65
1,60
1,05

O 2 C 2 1,10
1,15
1,60

C 3 1,65
1,75
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Table 7. Results for the cross of balanced nesting and stair nesting.

h S (h) g (h) γ̃ (h)

(1, 0) 0,3821 2 0,1910
(2, 0) 3,4081 8 0,4260
(0, 1) 1,5625 1 1,5625
(0, 2) 0,7618 4 0,1905
(1, 1) 0,3025 1 0,3025
(1, 2) 10,8458 4 2,7115
(2, 1) 4,0741 4 1,0185
(2, 2) 29,5411 16 1,8463

Table 8. Results for the cross of balanced nesting and stair nesting.

S g σ̃2

0,3733 84 0,0044

So Ṽar [γ̃ (h)] = 2γ̃2(h)
g(h) . For this case we have





Ṽar [γ̃ (1, 0)] = 0, 0364916

Ṽar [γ̃ (2, 0)] = 0, 0453705

Ṽar [γ̃ (0, 1)] = 4, 8828100

Ṽar [γ̃ (0, 2)] = 0, 0181372

Ṽar [γ̃ (1, 1)] = 0, 1830120

Ṽar [γ̃ (1, 2)] = 3, 6760000

Ṽar [γ̃ (2, 1)] = 0, 5186850

Ṽar [γ̃ (2, 2)] = 0, 4261120

Ṽar
[
σ̃2
]
= 0, 0000005 .

We obtained similar results for both studies. The unbiased estimators for the
canonical variance components are, in general, similar and the variances of these
estimators are generally small in both studies. This similarity is even more in-
teresting since when we cross balanced and stair nesting, only 126 observations
are required, less that the 270 ones required for cross of balanced nesting. This
is in fact a big advantage when we compare both studies since the cross of bal-
anced nesting and stair nesting will allow experiments that will become cheaper,
due to the fewer number of observations involved, or with the same resources we
produce more experiments. Since in a practical experiment, the implementation
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cost is, many times, a decisive factor, the cross balanced and stair nesting will
be a strong alternative to the cross of balanced nesting. Moreover, for the cross
of balanced and stair nesting it is easy to carry out inference because it is very
similar to the cross of balanced nesting, that is well studied.
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