
Discussiones Mathematicae
Probability and Statistics 34 (2014) 5–21
doi:10.7151/dmps.1161

THE “THIRTY-SEVEN PERCENT RULE” AND THE

SECRETARY PROBLEM WITH RELATIVE RANKS
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1. Introduction

Suppose that we have a job opening for which we have n applicants of whom we
must hire exactly one. The applicants appear before us in random order one at
a time; all n! permutations are equally likely. We assume that we do not know
anything about the applicants until we interview them but that we have a clear
preference between any two whom we have already met with. After interviewing
a candidate, we can either accept them, in which case the search is over, or we
reject them and move on to the next candidate. Our hiring decision is constrained
by the rule that rejected candidates cannot be recalled; therefore, terminating the
process early and waiting too long both come with risks. (In particular, if we
reject each of the first n − 1 applicants then we are forced to hire the last one.)
What shall we do?

The answer, of course, depends on what our goal is exactly. In the classical
“secretary problem,” we aim to maximize the probability that we hire the best
candidate. It is easy to see that the best strategy is to reject the first k candidates
for some k and then hire the applicant whom we prefer over all the ones that
we have seen thus far; it was first proved by Gilbert and Mosteller in 1966 [6]
— and now well known — that this stopping rule Rn(k) is optimal at k ∼
n/e. The general appeal of the secretary problem can be partly attributed to
this surprisingly attractive answer, known popularly as the “thirty-seven percent
rule.” There is a vast literature and many variations of the secretary problem;
see, for example, Freeman [5], Ferguson [4], Pfeifer [9], Bruss and Ferguson [2],
Krieger and Samuel-Cahn [7], and their references.

Rather than focusing solely on the best applicant, one might instead aim to
minimize the expected rank of the applicant hired. As we can see from Theorem 1
below, the stopping rule Rn(k) just described yields a rather high expected rank,
approximately n/2e. Instead, as proved by Bearden [1] in 2006, with the optimally
chosen k ∼ √

n, the expected rank of the chosen candidate is considerably less,
only about

√
n. A markedly better result can be achieved if we allow an adaptive

strategy where our stopping rule is not given in advance but is dependent on the
relative ranks of the applicants we have already seen. Such an optimal strategy
was found by Lindley [8] in 1961; a few years later Chow et al. [3] proved that,
as n approaches infinity, the expected rank of the hired candidate using Lindley’s
stopping rule tends to the constant value

∞
∏

k=1

(

1 +
2

k

)1/(k+1)

≈ 3.87.

This is an amazing result, though the strategy that achieves it can only be stated
implicitly and employed via dynamic programming.
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In Section 2 of this paper, we discuss an explicit and a priori stopping rule that
generalizes Bearden’s result. Namely, we investigate the stopping rule Rn(k, l)
that rejects the first k candidates and then hires the first one after that that
ranks lower than the l-th best candidate among the first k. As we shall see, for
fixed l, the optimal value of k is about

k ∼ n
l

l+1 .

(Note that for l = 1 we get Bearden’s result.) As it turns out, with this k, the
value of l for which the stopping rule Rn(k, l) minimizes the expected rank of the
applicant hired is about log n− 1. This is a particularly pleasing result as

n
logn−1

logn = n/e;

in other words, we are rejecting the first ∼ n/e applicants, just like in the classical
secretary problem, but now the expected value of the rank of the applicant hired
is substantially lower, about e log n/2.

In Section 3 of our paper we introduce a common generalization of the classi-
cal secretary problem (where we are only interested in the best applicant) and the
variation just discussed (where we have no absolute requirements on the applicant
hired). Namely, we investigate what happens when we still want to minimize the
rank of the applicant hired, but we insist on hiring one of the best d applicants
(1 ≤ d ≤ n). The case d = 1 then yields the classical secretary problem, and the
case d = n corresponds to situation we analyzed in Section 2; we also provide a
full analysis of the case d = 2.

2. The expected rank resulting from strategy Rn(k, l)

Let n, k, and l be fixed positive integers with l ≤ k ≤ n − 1. By the stopping
rule Rn(k, l) we mean the strategy that selects an element s (for selected value)
of a permutation a1, a2, . . . , an of {1, 2, . . . , n} as follows. We let t (for test value)
denote the l-th lowest value among a1, . . . , ak and set

I = {i ∈ N | i ≤ n− k and ak+i < t}.

We then let

j =

{

min I if I 6= ∅,
n− k if I = ∅;

the rule then selects s = ak+j. In other words, the first k candidates are rejected,
after which the first value, if there is one, is selected that ranks lower than the
l-th best candidate among the first k, and the last value is selected otherwise.
We can determine the exact expected value of s as follows.
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Theorem 1. The expected value En(k, l) of the rank of the candidate hired fol-

lowing strategy Rn(k, l) is

En(k, l) =
n+ 1

2
·
(

l

k + 1
+

(

n−l
k−l

)

(

n
k

)

)

.

Proof. First we introduce some terminology. We say that the sequence a1,
a2, . . . , an is successful if at least one of ak+1, ak+2, . . . , an is less than t (that
is, the set I above is nonempty); otherwise, if each of ak+1, ak+2, . . . , an is more
than t, we say that the sequence is unsuccessful. We will consider the cases of
successful and unsuccessful sequences separately.

Suppose first that our search is successful and we select the value s = ak+j

for some j ∈ N. Note that

1 ≤ s ≤ t− 1;

furthermore, since exactly l of the values a1, a2, . . . , ak+j are less than t and
k − l + j − 1 are more than t, we must have l + 1 ≤ t ≤ n − k + l − j + 1.
Consequently,

1 ≤ j ≤ n− k + l − t+ 1

and

l + 1 ≤ t ≤ n− k + l

must hold.

We need to determine, for fixed values of t, j, and s, the number of sequences
a1, a2, . . . , an for which

• t is the l-th lowest value among a1, a2, . . . , ak;

• ak+1, ak+2, . . . , ak+j−1 are each more than t; and

• s = ak+j is less than t.

We do this as follows.

First, we choose the sequence a1, a2, . . . , ak. Since l− 1 of the k elements are
less than t but unequal to s and k − l of them are more than t, we have

(

t− 2

l − 1

)

·
(

n− t

k − l

)

ways to select the values; we then have k! ways to arrange them into a sequence.
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Next, we choose the sequence ak+1, ak+2, . . . , ak+j−1. Since each of these terms
must be more than t and distinct from those k − l values among a1, a2, . . . , ak
that are also more than t, we have

(

n− k + l − t

j − 1

)

ways to select the values; we then have (j − 1)! ways to arrange them into a
sequence.

Finally, we have (n−k−j)! ways to arrange the remaining n−k−j elements
of {1, 2, . . . , n} into the sequence ak+j+1, ak+j+2, . . . , an.

In summary, there are

(

t− 2

l − 1

)

·
(

n− t

k − l

)

·
(

n− k + l − t

j − 1

)

· k! · (j − 1)! · (n− k − j)!

sequences a1, a2, . . . , an satisfying the three conditions above, which we may
rewrite as

(

t− 1

l − 1

)

·
(

n− t

k − l

)

·
(

n− k − j

t− l − 1

)

· (t− l) · k! · (n− k + l − t)!

t− 1
.

(Note that, in the case of a successful sequence, t 6= 1.) Therefore, for a given

pair of integers t and s, with 1 ≤ s ≤ t− 1, the probability P
√
n (k, l; t, s) that the

stopping rule Rn(k, l) results in the (successful) selection of s is

P
√
n (k, l; t, s) =

n−k+l−t+1
∑

j=1

(

t− 1

l − 1

)

·
(

n− t

k − l

)

·
(

n− k −j

t− l − 1

)

· (t−l) · k! · (n−k + l−t)!

(t− 1) · n! .

We can simplify this expression by observing that
(

n−k−j
t−l−1

)

enumerates the (t− l)-
subsets of the set {1, 2, . . . , n − k} whose smallest element is j. Letting j vary
from 1 to n−k+ l− t+1 includes all possibilities (when j = n−k+ l− t+1, our
set consists of the greatest t− l elements of the set {1, 2, . . . , n− k}). Therefore,

n−k+l−t+1
∑

j=1

(

n− k − j

t− l − 1

)

=

(

n− k

t− l

)

=
(n− k)!

(n− k + l − t)! · (t− l)!
,

yielding

P
√
n (k, l; t, s) =

1
(n
k

) ·
(

t− 1

l − 1

)

·
(

n− t

k − l

)

· 1

t− 1
.(1)
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Let us turn now to the case of unsuccessful sequences. The sequence a1, a2, . . . , an
leads to an unsuccessful search when each of ak+1, ak+2, . . . , an is more than
the l-th smallest element among a1, a2, . . . , ak. In other words, a sequence is
unsuccessful exactly when each of 1, 2, . . . , l is among the first k terms of the
sequence. Therefore, for a given integer s, with l + 1 ≤ s ≤ n, the probability
PX
n (k, l; t, s) that the stopping rule Rn(k, l) results in the (unsuccessful) selection

of s is

PX
n (k, l; s) =

k!

(k − l)!
· (n− l − 1)!

n!
=

1
(n
k

) ·
(

n− l

k − l

)

· 1

n− l
.(2)

We can then exhibit the expected value of s as

En(k, l) =

n−k+l
∑

t=l+1

t−1
∑

s=1

P
√
n (k, l; t, s) · s+

n
∑

s=l+1

PX
n (k, l; s) · s,

where

n−k+l
∑

t=l+1

t−1
∑

s=1

P
√
n (k, l; t, s) · s =

n−k+l
∑

t=l+1

1
(n
k

) ·
(

t− 1

l − 1

)

·
(

n− t

k − l

)

· 1

t− 1
· t

2 − t

2

=
l

2
(n
k

) ·
n−k+l
∑

t=l+1

(

n− t

k − l

)

·
(

t

l

)

and

n
∑

s=l+1

PX
n (k, l; s) · s =

1
(n
k

) ·
(

n− l

k − l

)

· 1

n− l
·
(

n2 + n

2
− l2 + l

2

)

=
n+ l + 1

2
(n
k

) ·
(

n− l

k − l

)

.

Next, observe that
n−k+l
∑

t=l

(

n− t

k − l

)

·
(

t

l

)

=

(

n+ 1

k + 1

)

,

since both sides of the equation count the number of (k + 1)-subsets of the set
{1, 2, . . . , n+1}. Indeed, the number of (k+1)-subsets of {1, 2, . . . , n+1} whose
(l + 1)-st smallest element equals t+ 1 is

(

n− t

k − l

)

·
(

t

l

)

;
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as t ranges from l to n − k + l, we get all (k + 1)-subsets of {1, 2, . . . , n + 1}.
Therefore,

n−k+l
∑

t=l+1

(

n− t

k − l

)

·
(

t

l

)

=

(

n+ 1

k + 1

)

−
(

n− l

k − l

)

,

and thus

En(k, l) =
l

2
(n
k

) ·
((

n+ 1

k + 1

)

−
(

n− l

k − l

))

+
n+ l + 1

2
(n
k

) ·
(

n− l

k − l

)

=
n+ 1

2
·
(

l

k + 1
+

(

n−l
k−l

)

(

n
k

)

)

,

as claimed.

We can now use Theorem 1 to find the stopping rule Rn(k, l) that minimizes the
expected rank En(k, l). For l = 1 we have

En(k, 1) =
n+ 1

2
·
(

1

k + 1
+

k

n

)

;

this quantity attains its minimum value when k =
√
n− 1, and thus the stopping

rule Rn(k, 1) is optimal when k = ⌊√n−1⌋ or k = ⌈√n−1⌉, confirming Proposi-
tion 1 in [1] (although the result there was under slightly different assumptions).

Minimizing for l = 2 exactly is more complicated. We have

En(k, 2) =
n+ 1

2
·
(

2

k + 1
+

k2 − k

n2 − n

)

,

and this quantity attains its minimum value when

k =
1

2
·
(

(

√

(2n−1)4 −1 + (2n−1)2
)1/3

− 1+
(

√

(2n−1)4 −1 + (2n −1)2
)−1/3

)

;

for large n this can be approximated as k ∼ n2/3.

More generally, for fixed l and for large k and n, we have

En(k, l) =
n+ 1

2
·
(

l

k + 1
+

k · (k − 1) · · · · · (k − l + 1)

n · (n− 1) · · · · · (n− l + 1)

)

∼ n

2
·
(

l

k
+

(

k

n

)l
)

,

which attains its minimum at k = nl/(l+1). For this value of k, we have
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En(k, l) ∼
n

2
·
(

l

k
+

(

k

n

)l
)

=
n

2
·





l

nl/(l+1)
+

(

nl/(l+1)

n

)l


 =
l + 1

2
· n1/(l+1),

and this is minimal when l = log n− 1, in which case we have

k = nl/(l+1) =
n

e

and

En(k, l) ∼
l + 1

2
· n1/(l+1) =

e

2
log n.

We can thus see that whether our goal is to maximize the probability of hiring the
top candidate, as in the classical secretary problem, or to minimize the expected
rank of the applicant hired, we should let the first k ∼ n/e applicants pass; but
by hiring the l-th best candidate after the first k with l ∼ log n − 1 yields an
expected rank of approximately e log n/2, a substantial improvement compared
to the classical rule that aims to select the best candidate (l = 1).

3. A generalization

In the classical secretary problem, one’s goal is to select the absolute lowest ranked
applicant, while in the problem we just considered, we make no demands on the
rank of the applicant selected. As a common generalization, here we consider the
case when we still want to minimize the expected rank of the applicant hired,
but we are only interested when this rank is within the d lowest (for a given
1 ≤ d ≤ n). We may reformulate the problem in terms of rewards: If an applicant
of absolute rank s is hired, our reward is vn,d(s) where

vn,d(s) =

{

n+ 1− s if s ≤ d,

0 otherwise.

The classical secretary problem then corresponds to the case of d = 1 (when the
reward is n if we hire the best applicant but 0 otherwise), and the no-demand
problem of the previous section corresponds to d = n (where the reward is n for
the best applicant, n− 1 for the second best, and so on).

We can use our previous expressions (1) and (2) to compute the expected
reward Vn,d(k, l) following our stopping rule Rn(k, l) as
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Vn,d(k, l) =
n−k+l
∑

t=l+1

min{t−1,d}
∑

s=1

P
√
n (k, l; t, s) · (n+ 1− s)

+
d
∑

s=l+1

PX
n (k, l; s) · (n+ 1− s).

(3)

We can then easily see that

Vn,n(k, l) = (n+ 1)− En(k, l).

Indeed, we have

En(k, l) + Vn,n(k, l) =

n−k+l
∑

t=l+1

t−1
∑

s=1

P
√
n (k, l; t, s) · s+

n
∑

s=l+1

PX
n (k, l; s) · s

+
n−k+l
∑

t=l+1

t−1
∑

s=1

P
√
n (k, l; t, s) · (n+ 1− s)

+
n
∑

s=l+1

PX
n (k, l; s) · (n+ 1− s)

= (n+ 1) ·
(

n−k+l
∑

t=l+1

t−1
∑

s=1

P
√
n (k, l; t, s) +

n
∑

s=l+1

PX
n (k, l; s)

)

= n+ 1,

since
n−k+l
∑

t=l+1

t−1
∑

s=1

P
√
n (k, l; t, s) +

n
∑

s=l+1

PX
n (k, l; s)

is the sum of all probabilities and thus equals 1.

As we have seen in the previous section, with k and l approximately n/e and
log n− 1, respectively, we have

En(k, l) ∼
e

2
log n,

and therefore

lim
n→∞

max{Vn,n(k, l) | k, l}
n

= lim
n→∞

min{n+ 1− En(k, l) | k, l}
n

= 1.
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Thus we can rest assured: with a large pool of applicants, when following a simple
strategy but not deeming any applicant unacceptable, we are poised to end up
with one of the best secretaries anyway.

In general, we are interested in finding (or estimating) for every (fixed) d,
the value of

cd = lim
n→∞

max{Vn,d(k, l) | k, l}
n

.

Computational data suggest that

c1 ≈ 0.37, c2 ≈ 0.51, c3 ≈ 0.63, c4 ≈ 0.71,

c5 ≈ 0.77, c6 ≈ 0.81, c7 ≈ 0.84, c8 ≈ 0.87, . . .

According to the classical secretary problem, and as we confirm below, we have
c1 = 1/e; we will also find the exact value of c2.

First, we establish the following explicit results.

Theorem 2. Let Hn(k) denote the harmonic number
∑n−k

i=1 1/(n − i). The ex-

pected rewards Vn,d(k, l) for the stopping rule Rn(k, l) in the cases of d = 1 and

d = 2 are as follows.

Vn,1(k, l) =















k · (Hn −Hk) if l = 1

n
l−1 ·

(

k
n − (n−l

k−l
)

(n
k
)

)

if l ≥ 2
(4)

Vn,2(k, l) =















2n−1
n · k · (Hn −Hk)− k

n · (n− k − 1) if l = 1

2n−1
l−1 ·

(

k
n − (n−l

k−l
)

(n
k
)

)

if l ≥ 2 .

(5)

Proof. Assume first that l ≥ d. Then (3) becomes

Vn,d(k, l) =
n−k+l
∑

t=l+1

d
∑

s=1

P
√
n (k, l; t, s) · (n+ 1− s);

substituting (1) and simplifying yields

Vn,d(k, l) =
d · (2n+ 1− d)

2
(n
k

) ·
n−k+l
∑

t=l+1

(

t− 1

l − 1

)

·
(

n− t

k − l

)

· 1

t− 1
.(6)
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With l = d = 1, (6) becomes

Vn,1(k, 1) =
n
(n
k

) ·
n−k+1
∑

t=2

(

n− t

k − 1

)

· 1

t− 1
.(7)

Our result for Vn,1(k, 1) then follows from the identity

n−k+1
∑

t=2

(

n− t

k − 1

)

· 1

t− 1
=

(

n− 1

k − 1

)

· (Hn −Hk),(8)

which we prove next.

Note that (8) is equivalent to

n−k+1
∑

t=2

(

n−t

k−1

)

· (k − 1)! ·
(

n− k

n−t+1−k

)

· (n − t+ 1− k)! · (t− 2)! + (n− 1)! ·Hk

= (n − 1)! ·Hn.
(9)

Here we recognize that the right-hand side of (9) is Stirling’s cycle number
[

n
2

]

,
which counts the number of arrangements of the first n positive integers into
two disjoint nonempty cycles. (The order of the two cycles does not matter; as
customary, we assume that the one containing 1 appears first. Furthermore, we
assume that the cycles are both listed so that their smallest element appears
first.) Indeed, if the first cycle has length n− t, then we have

(n − 1)!

t!

choices for it, leaving (t− 1)! choices for the second cycle. As t ranges from 1 to
n− 1, we get all possibilities, and thus

[n

2

]

=

n−1
∑

t=1

(n− 1)!

t!
· (t− 1)! =

n−1
∑

t=1

(n− 1)!

t
= (n− 1)! ·Hn.

We prove (9) by showing that

n−k+1
∑

t=2

(

n− t

k − 1

)

· (k − 1)! ·
(

n− k

n− t+ 1− k

)

· (n− t+ 1− k)! · (t− 2)!(10)
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counts those cycle-decompositions that contain each of 1, 2, . . . , k in the same
(first) cycle, while

(n − 1)! ·Hk

counts all others.

To verify the first claim, imagine that the first cycle (the one containing
1, 2, . . . , k) has length n − t + 1; letting t vary from 2 to n − k + 1 assures that
we have considered all possibilities where neither cycle is empty. To count the
number of choices for the first cycle, recall that it starts with 1; we then have

(

n− t

k − 1

)

ways to choose places for 2, 3, . . . , k, and (k− 1)! ways to arrange them. We also
have

(

n− k

n− t+ 1− k

)

ways to choose the remaining elements in the first cycle, with (n− t+1−k)! ways
to arrange them. Our second cycle has length t−1, so we have (t−2)! choices with
the smallest element appearing first there too. Thus, the number of arrangements
of 1, 2, . . . , n into two disjoint nonempty cycles with each of 1, 2, . . . , k in the first
cycle is given by (10).

To enumerate the remaining cycle-decompositions, start by arranging 1, 2,

. . . , k into two disjoint nonempty cycles: there are
[

k
2

]

ways to do this. Then,

place the elements k+1, k+2, . . . , n into one of the two cycles one at a time; each
can be put to the right of an already-placed element. (The two leading terms in
the cycles must remain.) The number of choices to place these elements is

(n− 1)!

(k − 1)!
,

proving our second claim as

[

k

2

]

· (n− 1)!

(k − 1)!
= (n− 1)! ·Hk.

This completes the proof of the formula for Vn,1(k, 1).

Next, we prove that for l ≥ 2 we have

n−k+l
∑

t=l+1

(

t− 1

l − 1

)

·
(

n− t

k − l

)

· 1

t− 1
=

1

l − 1
·
((

n− 1

k − 1

)

−
(

n− l

k − l

))

,(11)
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which then, with (6), establishes our results for Vn,1(k, l) and Vn,2(k, l) when
l ≥ 2.

We start the proof of (11) by rewriting it as

n−k+l
∑

t=l

(

t− 1

l − 1

)

·
(

n− t

k − l

)

· 1

t− 1
=

1

l − 1
·
(

n− 1

k − 1

)

,

and then as

n−k+l
∑

t=l

(

t− 2

l − 2

)

· (l − 2)! ·
(

n− k

t− l

)

· (t− l)! ·
(

n− t

k − l

)

· (k − l)! · (n− t− k + l)!

=
(n− 1)! · (k − l)! · (l − 2)!

(k − 1)!
.(12)

In a manner similar to the one above, we establish this identity by showing that
both sides count the number of arrangements of 1, 2, . . . , n into two disjoint cycles
with the added conditions that each of 1, 2, . . . , l−1 appears in the first cycle and
each of l, l+ 1, . . . , k appears in the second cycle. (As usual, we assume that the
cycles are arranged with their smallest elements first.) Indeed, if the first cycle
has length t− 1, then we have

(

t− 2

l − 2

)

· (l − 2)!

ways to position 2, 3, . . . , l − 1;

(

n− k

t− l

)

· (t− l)!

ways to choose and position the remaining elements in the first cycle;

(

n− t

k − l

)

· (k − l)!

ways to position l + 1, l + 2, . . . , k in the second cycle; and

(n− t− k + l)!

ways to arrange the remaining elements in the second cycle. As t ranges from l to
n− k+ l, we account for all desired cycle-decompositions, verifying the left-hand
side of (12).
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To arrive at the right-hand side, we start by arranging the elements 2, 3, . . . , l−1
in the first cycle (all behind 1) and arranging l+1, l+2, . . . , k in the second cycle
(all behind l); there are

(l − 2)! · (k − l)!

ways to do this. The elements k + 1, k + 2, . . . , n can then be inserted, one at a
time, to the right of previously-placed elements; this can be accomplished in

(n − 1)!

(k − 1)!

ways. The result now follows.

Finally, we turn to the case of l = 1 and d = 2; from (3) we have

Vn,2(k, 1) =
n−k+1
∑

t=2

min{t−1,2}
∑

s=1

P
√
n (k, 1; t, s) · (n+ 1− s) +

2
∑

s=2

PX
n (k, 1; s) · (n+ 1− s)

=

n−k+1
∑

t=2

2
∑

s=1

P
√
n (k, 1; t, s) · (n+ 1− s)− P

√
n (k, 1; 2, 2) · (n− 1)

+ PX
n (k, 1; 2) · (n− 1),

which, using (1) and (2) and simplifying, becomes

Vn,2(k, 1) =
2n− 1
(

n
k

) ·
n−k+1
∑

t=2

(

n− t

k − 1

)

· 1

t− 1
− k

n
· (n − k − 1).

Our claim for Vn,2(k, 1) now follows from (8).

Theorem 3. For a fixed value of d, let

cd = lim
n→∞

max{Vn,d(k, l) | k, l}
n

.

Then c1 = 1/e ≈ 0.36788, and c2 = 2x−x2 ≈ 0.51239 where x is the smaller root

of the equation

2x− 2 log x = 3.
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Proof. We will use Theorem 2 to find the values of k and l for which Vn,d(k, l)
is maximal for d = 1 and d = 2.

Consider first d = 1, in which case for l = 1 we have

Vn,1(k, 1) = k · (Hn −Hk) = k · (n− k) · Average
{

1

n− i
| i = 1, 2, . . . , n− k

}

and for l ≥ 2 we have

Vn,1(k, l) =
n

(l − 1) ·
(n
k

) ·
((

n− 1

k − 1

)

−
(

n− l

k − l

))

=
n

(l − 1) ·
(

n
k

) ·
((

n− 2

k − 1

)

+

(

n− 3

k − 2

)

+ · · ·+
(

n− l

k − l + 1

))

=
n

(l − 1) ·
(n
k

) ·
((

n− 2

n− k − 1

)

+

(

n− 3

n− k − 1

)

+ · · · +
(

n− l

n− k − 1

))

=
n
(n
k

) · Average
{(

n− j

n− k − 1

)

| j = 2, 3, . . . , l

}

where Average S is the arithmetic average of the finite set of real numbers S.
Note that 1

n−i is an increasing function of i but
(

n−j
n−k−1

)

is a decreasing function
of j, thus we have

Vn,1(k, 1) ≥ k · (n− k) · 1

n− 1

and

Vn,1(k, l) ≤
n
(n
k

) ·
(

n− 2

n− k − 1

)

= k · (n− k) · 1

n− 1

as l ≥ 2. Therefore, for fixed n and k, Vn,1(k, l) is maximal for l = 1.
To find the maximum of Vn,1(k, 1), we let x denote the limit of k/n as n

approaches infinity; we then have

Vn,1(k, 1) = k · (Hn −Hk) ∼ −n · x · log x,

and this attains its maximum when x = 1/e. Therefore, for d = 1, Vn,1(k, l)
attains its maximum when l = 1 and k ∼ n/e, in which case we have Vn,1(k, 1) ∼
n/e.

The situation is somewhat more complicated if d = 2. We still find that for
l ≥ 2,

Vn,2(k, l) =
2n− 1
(

n
k

) · Average
{(

n− j

n− k − 1

)

| j = 2, 3, . . . , l

}
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which is a decreasing function of l, but comparing Vn,2(k, 1) and Vn,2(k, 2) is not
possible. We will, however, show that, as n approaches infinity, the maximum
value of Vn,2(k, 1) is more than the maximum value of Vn,2(k, 2), as follows.

Clearly,

Vn,2(k, 2) =
2n− 1
(n
k

) ·
(

n− 2

n− k − 1

)

=
2n− 1

n2 − n
· k · (n − k)

is maximal when k = n/2; in which case we have Vn,2(k, 2) ∼ n/2.
To find the maximum of Vn,2(k, 1), we let x denote the limit of k/n as n

approaches infinity, as before; we then have

Vn,2(k, 1) =
2n − 1

n
·k·(Hn−Hk)−

k

n
·n·
(

1− k

n
− 1

n

)

∼ −2n·x·log x−n·x·(1−x).

This attains its maximum when 2x− 2 log x = 3 or x ≈ 0.30171, in which case

Vn,2(k, 1) ∼ n · x · (x− 2 log x− 1) = n · x · (2− x)

or about 0.51239n. Since this is larger than n/2, we have established our claim.
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