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Abstract

Bertrand’s paradox is a longstanding problem within the classical in-
terpretation of probability theory. The solutions 1/2, 1/3, and 1/4 were
proposed using three different approaches to model the problem. In this ar-
ticle, an extended problem, of which Bertrand’s paradox is a special case, is
proposed and solved. For the special case, it is shown that the correspond-
ing solution is 1/3. Moreover, the reasons of inconsistency are discussed and
a proper modeling approach is determined by careful examination of the
probability space.
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dom chords.
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1. Introduction

Bertrand’s paradox is a problem discussed originally by Joseph Louis Fran-
cois Bertrand (1889) and still generates considerable interest for researchers and
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among physicists and philosophers, in particular (e.g. Jaynes (1973) and Marinoff
(1994)). Bertrand questioned the probability that a random chord in a circle has
length exceeding the length of a side of an inscribed equilateral triangle and gave
three different solutions based on continuous uniform distribution functions.

The first solution deals with random endpoints. A point is chosen at random
on the circumference of the circle and a tangent is drawn at this point. The angle
between the chord and the tangent is uniformly distributed between zero and π.
The desired probability is obtained when this angle exceeds π/3, but is less than
2π/3. Using the uniform distribution for the angle, the probability is 1/3.

The second solution is based on a random radius. A point is selected at
random on the radius of the circle and a chord perpendicular to the radius at the
chosen point is constructed. The length of the chord is greater than the side of
the triangle if d < r/2 where d denotes the distance of the midpoint of the chord
from the center. Thus, the probability 1/2 can be obtained based on the uniform
probability density function for d.

The third approach is concerned with modeling the random midpoint. This
approach considers a random chord by choosing a point at random in the circle
and letting this point be the midpoint of the random chord. The length of the
chord is longer than the side of the triangle

√
3r if the chosen point falls within

a concentric circle of radius r/2. The area of the smaller circle with radius r/2 is
one fourth the area of the larger circle resulting in the probability of 1/4.

These aforementioned solutions are obtained by assigning uniform probabil-
ity density to (A) angles of intersections of the chord on the circumference, (B)
the linear distance between centers of the chord and circle, (C) the center of the
chord over the interior area of the circle. According to Jaynes (2003), these as-
signments lead to the probabilities of 1/3, 1/2, and 1/4, respectively. Bertrand’s
paradox is considered a paradox because it is believed that “the uniform random
choice” should uniquely determine the desired probability (Szekely 1986). Many
researchers explain that the dissimilar solutions are due to the different defini-
tions of random chords, and consequently, they have developed various principles
based upon it (e.g. Gardner (1959), Basano and Ottonello (1996), Holbrook and
Kim (2000), Chiu and Larson (2009)). Bertrand’s paradox is not really a para-
dox since different solutions are based upon different methods of modeling the
problem. This paper investigates the probability space of these modeling ap-
proaches to disentangle the inconsistency and settle on an appropriate approach.
A probability space consists of three parts.

1) A sample space which is the set of all possible outcomes.

2) A set of events where each event is a set containing zero or more outcomes
and the collection of these events is a σ-algebra.

3) A function assigning probabilities to the events.
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The paper is organized as follows. In Section 2, the extended problem is posed
and solved. In Section 3, a more general problem of Bertrand’s paradox is dis-
cussed and inconsistencies of the approaches are addressed. Also, approaches are
compared in light of the extended problem to examine which probability space
can model the problem properly as well as the reasons for incompatible solutions.
Finally, concluding remarks are provided in Section 4.

2. Extended problem

What is the probability p that a random chord through a given point N at distance

d from the center of a circle with radius r is longer than
√
ar for 0 ≤ a ≤ 4?

First, the definition of a random chord needs to be stated clearly. A random
chord can be generated by its two endpoints on the circumference, or equivalently,
by its midpoint in the open disk. In other words, two points are selected on the
circumference randomly and the line connecting these two points is the random
chord. Alternatively, a point is chosen on the disk randomly and two points on the
circumference having the same distance from it are considered as the endpoints
of the random chord. These two methods of generating random chords, which
are applied in the random endpoints and the random midpoint approaches, are
equivalent since each chord has a unique midpoint. This is affirmed later in
equations (5) and (10).

Figure 1. The extended problem of Bertrand’s paradox.

In Figure 1, consider N(xN , yN ) as a random point with distance d from the
origin point, O, or the center of the circle with radius r. We should find the
radius of a concentric circle, R, such that if N lies inside it, all chords passing
through N are longer than

√
ar. The radius R can be obtained for given values of

a and r by considering two random points A(x1, y1) and B(x2, y2) located on the
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circumference of the circle. The distance between A and B is
√
ar. In addition,

assume that T , the midpoint of AB, is located on the circumference of the circle
with radius R. Thus,

(1)
(x1 − x2)

2 + (y1 − y2)
2 = ar2

((x1 + x2)/2)
2 + ((y1 + y2)/2)

2 = R2

}

⇒ 4r2 = ar2+4R2 ⇒ R = r
√

1− a/4.

Therefore, if 0 ≤ d < r
√

1− a/4, then all chords passing through the point N
are longer than

√
ar; and if r

√

1− a/4 ≤ d ≤ r, then the desired probability can
be obtained as follows. In Figure 1, countless random chords can pass through

N , but among all points on the circumference, only points located on
⌢
AD and

⌢
BC have the potential to generate a chord longer than

√
ar. Note that one of

the two tangent points, T , is shown in Figure 1. Thus, the desired probability
is equal to p = (2πr)−1(2r(∠AOD + ∠B′OC)) where B′ is the reflection of B
across the horizontal axis. An exterior angle of a triangle is equal to the sum of
opposite interior angles. Now,

(2)

∠AOD = ∠TNO + ∠TAO = Arcsin(R/d) + Arcsin(R/r),

∠B′OC = ∠B′NC − ∠OB′N = ∠TNO − ∠OBT

= Arcsin(R/d) −Arcsin(R/r).

Thus,

(3) p = π−1(∠AOD + ∠B′OC) = 2π−1Arcsin(R/d).

Now, let E represent the event that the length of the random chord passing
through a point with distance d from the center of the circle with radius r is
longer than

√
ar. By substituting Equation (1) into Equation (3), the probability

is expressed as

(4) P (E) =







1, 0 ≤ d < r
√

1− a/4

2π−1Arcsin(r
√

1− a/4
/

d), r
√

1− a/4 ≤ d ≤ r.

Figure 2 illustrates the probability in Equation (4). The values of P (E) are
shown over the closed disk. The figure demonstrates that each point on the
closed disk does not have an equal chance to be a part of a chord that is greater
than

√
ar. In other words, the location of that point determines what percentage

of chords passing through it can be greater than
√
ar. For example, all chords
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passing through the center of the circle are greater than
√
ar. This characteristic

holds for all points of the concentric disk with radius R. Now, suppose that a
point lies within disks with radii R and r. The closer this point is to the outer
circumference, the less potential it has for being a chord longer than

√
ar.

Figure 2. The probabilities in Equation (4) over the closed disk.

The question deliberated by Bertrand can be answered by substituting d = r
and a = 3 into Equation (4). In other words, this special case of the extended
problem gives the desired probability for points on the circumference. Since all
points on the circumference have similar probability of 1/3, as shown in Figure
2 and Equation (4), the solution to Bertrand’s problem is 1/3.

3. Comparisons of modeling approaches

In this section, a generalization of Bertrand’s Paradox is developed in light of the
extended problem. The generalization is helpful to comprehend its special case,
and to identify the appropriate probability space for representing the problem.
The discussions and comparisons in this section also provide insight about the
merits and the deficiencies of the approaches.

What is the probability that a random chord in a circle with radius r is longer

than
√
ar for 0 ≤ a ≤ 4?

Bertrand’s paradox is a special case of this problem when a = 3. Applying
the random endpoints approach leads to p = 2π−1Arcsin(

√

1− a/4) for this
generalization. This solution is obtained later in Equation (7). We obtained p =
r
√

1− a/4/r =
√

1− a/4 and p = π(r
√

1− a/4)2/πr2 = 1− a/4 as the desired
probabilities based on the random radius approach and the random midpoint
approach, respectively. All three solutions are obtained according to the similar
probability spaces assumed in Bertrand’s paradox.
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Like Bertrand’s Paradox, the generalization of Bertrand’s Paradox is a perplexing
problem unless the components of the probability space are clearly delineated.
The different answers are due to different probability spaces. Thus, at least one
component of the probability space, namely the sample space, event, or function,
is not consistent among the approaches. Note that the discrepancy of solutions
is not due to the vague definition of random chords. In fact, it is caused by an
inappropriate sample space that cannot represent random chords or a function
that does not assign probabilities to the events adequately. Table 1 provides the
principal elements of the probability space for the three approaches used in the
generalization of Bertrand’s paradox.

Now, let us investigate the probability space of the modeling approaches in
the following subsections.

Random

Endpoints

Random Radius Random

Midpoint

Sample Space Circumference of the
circle.

A radius of the cir-
cle.

The closed disk.

Event Given either end-
points of a chord
as the vertex of an
inscribed isosceles
triangle with sides
of

√
ar, the other

endpoint lies on the
intercepted arc; or
equivalently, the
Euclidean distance
between the two
endpoints is greater
than

√
ar.

The Eucliden dis-
tance between the
midpoint of a chord
and the center of
the circle is less
than r

√

1− a/4.

The midpoint of a
chord lies on a con-
centric disk with ra-
dius r

√

1− a/4.

Function Uniform distribution
on the circumference
of the circle.

Uniform distribu-
tion along the ra-
dius.

Uniform distribu-
tion over the closed
disk.

Solution 2π−1Arcsin(
√

1− a/4)
√

1− a/4 1− a/4

Table 1. Probability space elements for the three approaches.

3.1. Random endpoints probability space

First, the sample space needs to be investigated in order to verify if the set cov-
ers all possible outcomes. Here, these outcomes correspond to random chords.
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Clearly, in the random endpoints approach, two random points on the circum-
ference can be considered as the endpoints of a random chord. Thus, the sample
space generates all possible random chords. Also, the event based on Euclidean
distance between two endpoints is a well defined criterion to find out whether the
length of the chord is larger than

√
ar. The following equation is based on the

sample space and the event defined in the endpoints approach where

(5)
PdAB

(dAB >
√
ar) = Px1,x2,y1,y2((x1 − x2)

2 + (y1 − y2)
2 > ar2)

= Px1,x2,y1,y2(x1x2 + y1y2 < (1− a/2)r2).

Using polar coordinates, Equation (5) gives

(6) P0≤α,β≤2π(cos(β − α) < 1− a/2).

If we associate probabilities to the event correctly, the desired probability of
2π−1Arcsin(

√

1− a/4) will be obtained as follows. The hatched area in Figure 3
illustrates the feasible region of Equation (6).

Figure 3. The feasible region of P0≤α,β≤2π(cos(β − α) < 1− a/2).

The area of the isosceles trapezoids is equal to 4π(π−Arccos(1 − a/2)) and di-
viding by (2π)2 gives Arccos(a/2 − 1)/π = 2π−1Arcsin(

√

1− a/4). Note that
φ =Arcsin(

√

1− a/4)) is plugged into cos(2φ) = 1− 2sin2(φ) to obtain

(7) P0≤α,β≤2π(cos(β − α) < 1− a/2) = 2π−1Arcsin(
√

1− a/4).

The probability can also be obtained by substituting d = r in Equation (4). Alter-
natively, assume that an isosceles triangle with sides of

√
ar is inscribed in a circle
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with radius r. The measure of the inscribed angle is 2Arcsin(
√

(2r)2 − (
√
ar)2/2r)

= Arcsin(
√

1− a/4). Also, the measure of the intercepted arc is twice that of
the inscribed angle. Thus, the desired probability is 2(2Arcsin(

√

1− a/4))/2π =
2π−1Arcsin(

√

1− a/4).

3.2. Random radius probability space

Now, consider the random radius approach. It should be asked whether the
sample space consisting of radii of the circle could represent all random chords.
The points constructing the chosen radius are midpoints of chords. Figure 4
shows that countless random chords can pass through a given point N located
on the radius. The figure indicates that the perpendicular chord to the radius is
one realization of countless random chords passing through N .

Figure 4. A given point N on a radius with length r.

The points on the radius are loci of projected endpoints of parallel chords from
the circumference. In other words, a point on the radius can only represent a
chord perpendicular to the radius. Consequently, the chosen radius cannot be
considered as a proper sample space to represent random chords. Therefore,
in the random radius approach, the probability of

√

1− a/4 is obtained based
upon the assumption that chords are perpendicular to the chosen radius in a
semicircle. As a result, we should infer that

√

1− a/4 of random chords that
are perpendicular to the chosen radius are larger than

√
ar. If chords are drawn

randomly in the semicircle, the following probability is obtained. Suppose two
random endpoints lie in quadrants 1 and 2. If the random endpoints approach
is applied with consideration of the circumference of the upper semicircle as the
sample space, the probability that the length of a random chord is greater than√
ar is illustrated in Figure 5.

Figure 5 displays the feasible region for 0 ≤ a ≤ 2. Similarly, the region can
be found for 2 ≤ a ≤ 4 by reducing the hatched region toward the illustrated
direction. Equation (8) gives the desired probability as
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(8)

P0≤α≤π/2,
π/2≤β≤π

(cos(β − α) < 1− a/2) =

{

1− 2(π−1Arccos(1 − a/2))2, 0 ≤ a ≤ 2

2(π−1Arccos(a/2 − 1))2, 2 ≤ a ≤ 4.

If the sample space changes to the circle instead of the upper semicircle, Equation
(4) holds assuming d = r. In the random radius approach, since the radius does
not generate all random chords, it cannot be considered a suitable sample space.

Figure 5. The feasible region of P0≤α≤π/2,π/2≤β≤π(cos(β − α) < 1− a/2).

As another example, the following situation demonstrates the importance of es-
tablishing a correct probability space to arrive at a valid solution. Let us consider
the sample space of the random radius approach for the random endpoints. As-
sume x2 = −x1 and y2 = y1, or β = π − α in polar coordinates, for the random
endpoints approach. It stipulates that one of the endpoints is selected randomly
on the circumference of the upper semicircle, but the other endpoint is the first
point reflected over the vertical axis. The following solution can be obtained
using Equation (6) and the perpendicularity assumption

(9)
P0≤α≤π/2,
π/2≤β≤π

(cos(β − α) < 1− a/2) = P0≤α≤π/2(− cos(2α) < 1− a/2)

= 2π−1Arcsin(
√

1− a/4).

Note that in Equation (9) the feasible region on the circumference is identical
to that of the random endpoints approach when the first random point is set
at (−r, 0). Although the answer is identical to Equation (7), the solution is not
acceptable since the sample space does not represent random chords appositely.



32 M.K. Ardakani and S.S. Wulff

3.3. Random midpoint probability space

Now, consider the random midpoint approach leading to 1 − a/4. Again, the
sample space needs to be checked to see if it can represent all random chords.
The sample space consists of all points forming the closed disk. Suppose in
Figure 4, point N is the midpoint of a chord, but this time N is not limited
to the chosen radius and can be located anywhere on the closed disk. Since a
chord has a unique midpoint, any point on the closed disk corresponds to two
endpoints on the circumference and, as a result, it represents a random chord.
The endpoints of chords are distributed on the circumference randomly similar
to the random endpoints. Thus, the sample space is well posed and represents
all possible random chords. All points in a concentric open disk with radius
r
√

1− a/4 produce the desired events. A random chord is greater than
√
ar if

the midpoint of the chord, namely T in Figure 1, lies inside of the concentric
open disk with radius r

√

1− a/4. This indicates that the event is also defined
properly. The following equation shows that the sample space and event are well
established and are in accordance with the random endpoints

(10)

POT (OT < r
√

1− a/4)

= Px1,x2,y1,y2(((x1 + x2)/2)
2 + ((y1 + y2)/2)

2 < r2(1− a/4))

= Px1,x2,y1,y2(x1x2 + y1y2 < (1− a/2)r2)

= P0≤α,β≤2π(cos(β − α) < 1− a/2) .

In order to calculate the desired probability, the random midpoint approach uses
the desired area which is the area of the disk with radius r

√

1− a/4 divided by
the total area of the closed disk with radius r. This formula assumes that the
random midpoints are distributed uniformly over the closed disk. Is it appropriate
to assign a uniform distribution to the points of the closed disk? If this assumption
is true, we would expect a flat cylinder in Figure 2 and a uniform distribution
function in Equation (4). Points constructing the closed disk are not merely
midpoints of random chords, but they are also part of other chords. In other
words, a point on the disk can be a midpoint of a chord or part of other chords
which indicates that countless chords can pass through the point and only one
of the chords has equidistance from the circumference. The extended problem
has helped to clarify this statement. If, in the random midpoint approach, the
function assigns probabilities to the events properly, then the desired probability
of 2π−1Arcsin(

√

1− a/4) is obtained as shown in Equation (7).
There is one explanation for the solution 1− a/4. It should not be assumed

that 1 − a/4 of random chords are larger than
√
ar. Rather, it should be said

that 1−a/4 of points on the closed disk are part of random chords that are larger
than

√
ar since the midpoints of all these chords construct the open disk with
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radius r
√

1− a/4. The other a/4 points are part of random chords that may or
may not be larger than

√
ar. This possibility can be determined by Equation (4).

4. Concluding remarks

Bertrand obtained three different solutions to his proposed problem using differ-
ent probability spaces. An extended problem of Bertrand’s paradox is developed.
Also, comments are provided for the generalization of Bertrand’s paradox accord-
ing to the probability space elements. Like Bertrand’s Paradox, the generalization
of Bertrand’s Paradox can be considered a perplexing problem due to defining
an inappropriate sample space and probability function in the random radius
approach and the random midpoint approach.

In the random radius approach, the sample space is not defined properly for
the problem. The major flaw for this approach is that chords are not drawn
completely at random in the semicircle. The perpendicularity constraint for the
chosen radius is an additional assumption preventing the sample space from gen-
erating all random chords. The issue with the random midpoint approach is that
although the sample space and the event are valid, the function does not suitably
assign probabilities to the event. As a result, it causes deficiency in constructing
a proper probability space.

The authors advocate the random endpoints approach leading to the proba-
bility of 2π−1Arcsin(

√

1− a/4) or 1/3 for Bertrand’s paradox since its probabil-
ity space is credible and aptly models the problem. In a broad perspective, this
paradox serves as a warning to researchers to be careful with assumptions when
modeling problems.
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