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Abstract

In the paper a usual block design with treatment effects fixed and block
effects random is considered. To compare experimental design the asymp-
totic covariance matrix of a robust estimator proposed by Bednarski and
Zontek (1996) for simultaneous estimation of shift and scale parameters is
used. Asymptotically A- and D- optimal block designs in the class of designs
with bounded block sizes are characterized.
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1. Introduction

Consider an experiment with v ≥ 1 treatments arranged in b ≥ 2 blocks according
to the v×b incidence matrix N with entries nij ≥ 0. We assume that an observed
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random variable yijl for i = 1, . . . , v, j = 1, . . . , b and l = 1, . . . , nij have the
following additive structure

yijl = µi + λj + eijl,(1)

where µ1, . . . , µv – fixed (treatment) effects, λ1, . . . , λb – independent unobserv-
able random (block) effects normally distributed N(0, σ2λ), while e111, . . . , evbnvb

– independent random errors with N(0, σ2e) distribution (σλ and σe are scale pa-
rameters). Moreover, we assume that λ’s and e’s are independent. Denote by
µ the vector (µ1, . . . , µv)

′ of fixed effects and by σ the vector (σλ, σe)
′ of scale

parameters. Throughout the paper we assume that the parameter θ = (µ′, σ′)′ is
identifiable in the model, that is we assume that every row and every column in
N have a nonzero element, and that there is a column in N for which the sum
of its components exceeds 1.

For the model (1) there are different approaches to the problem of compar-
ison of experimental designs. Usually a comparision of designs is based on the
covariance matrix of a given estimator of µ and only equiblock-sized designs was
considered. One of used estimators is the best linear unbiased estimator (BLUE)
of µ in interblock model i.e. BLUE among linear unbiased estimators based on
block totals (Gaffke and Kraft, 1980, and Christof and Pukelsheim, 1985). An-
other proposition is BLUE of µ in the original model under restriction to such
designs for which BLUE exists (Kageyama and Zmyślony, 1993). In both cases
the orthogonal block design is A- and D- optimal. Somewhat different approach
has been proposed by Zmyślony and Zontek (1994). They have used a robust
estimator for θ given by Fisher consistent and Fréchet differentiable functional
(see Bednarski and Zontek, 1994,1996). Since the exact covariance matrix of the
estimator is not known, the asymptotic covariance matrix has been used to define
criteria of optimality.

In this paper we extend and generalize results of Zmyślony and Zontek (1994).
We characterize block designs which are A- as well as D- optimal separately for
estimation of µ, σ and θ in the class of designs with bounded block sizes. For
estimation µ as well as θ only the orthogonal block design is optimal in the con-
sidered class of designs. Moreover, it belongs to the class of A- as well as D-
optimal experimental designs for estimation of σ. Since robust estimators are
here considered, optimal properties of the orthogonal design are valid for small
departures from the model distribution. In the last section, values of considered
type of criterion functionals at the scaled asymptotic covariance matrix are com-
pared with the corresponding values of them at the sample covariance matrix
resulting from estimates of θ computed from generated data. Calculations was
made for selected experimental designs, parameters of the model and a type of
contamination of the model distribution, using the maximum likelihood estimator
and a robust estimator.
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Throughout the paper w′ stands for the transpose of a vector w and diag(w)
for a diagonal matrix with i -th diagonal element equal to the i -th component of w.
The a-dimensional vector with all entries unity and the identity a× a matrix are
denoted by 1a and Ia, respectively. For any a×a matrix M , the symbol det M
denotes the determinant of M and tr M the trace of M . We write M1 ≥ M2

(M1 > M2) when M1 and M2 are nonnegative definite (we mean also symetric)
matrices such that M1 −M2 is nonnegative (positive) definite matrix. A block
diagonal matrix with blocks B1, . . . , Ba is written as diag(B1, . . . , Ba). Finally,
let Ra+ = {(u1, . . . , ua)′ : u1 > 0, . . . , ua > 0}, Sa+ = {u ∈ Ra+ : u′1a = 1} and
let N a = {(n1, . . . , na)′ : n1, . . . , na are natural numbers}.

2. Asymptotic covariance matrix of robust estimators

As in Zmyślony and Zontek (1994) optimal properties of experimental designs
are derived by using an asymptotic covariance matrix (see also Müller, 1992) of
a robust estimator of θ = (µ′, σ′)′ proposed by Bednarski and Zontek (1994). For
convenience of the reader we briefly describe their results needed in this paper.

For j = 1, . . . , b let Yj be a vector of random variables in the j-th block
ordered in the following way

Yj = (y1j1, . . . , y1jn1j , y2j1, . . . , y2jn2j , . . . , yvj1, . . . , yvjnvj )
′.

Under model assumptions, the random vector Yj , j = 1, . . . , b, is normally dis-
tributed with expectation EYj = Xjµ, where Xj = diag(1n1j , . . . ,1nvj ), and with
covariance matrix cov(Yj) = σ2λ1n·j1

′
n·j + σ2eIn·j , where n·j =

∑v
i=1 nij . It is easy

to see that Y1, . . . , Yb are independent random vectors and that the distributions
of, say, Yj and Ys coincide for each θ in the parameter space Θ = Rv × R2

+

iff nij = nis for i = 1, . . . , v, i.e., when corresponding columns of the incidence
matrices are equal.

We divide random vectors Y1, . . . , Yb on the minimal number of subgroups
in such a way that in each subgroup there are identically distributed random
vectors. Let N1, . . . , Np stand for different columns of the incidence matrix N ,
and let bi, i = 1, . . . , p, be the number of repetitions of Ni (

∑p
i=1 bi = b). Then

without loss of generality we can assume that the incidence matrix N has the
following form

N = (N11
′
b1 , . . . , Np1

′
bp).

So Yci−1+1, . . . , Yci , where ci =
∑i

s=1 bs, co = 0, constitute the i-th subgroup.

Denoting by F̂ ibi , i = 1, . . . , p, the empirical distribution function resulting
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from Yci−1+1, . . . , Yci , define an estimator of θ as the parameter θ̂b in Θ for which∫ p∑
i=1

Φi(yi|θ)d(F̂ 1
b1(y1)× . . .× F̂ pbp(yp))(2)

attains the minimum value, where Φi(·, ·) is a real function on Rni × Θ, while
ni = N ′i1a Under some assumptions imposed on Φ1, . . . ,Φp, Bednarski and Zon-
tek (1996) have shown that the functional corresponding to (2) is Fisher con-
sistent and Fréchet differentiable at the model for the supremum norm. This
imply that the estimator is consistent and is robust for small departures from
the model distribution. Moreover, for fixed matrix Ñ = (N1, . . . , Np) and un-

der the assumption limb→∞(bi/b) = qi > 0 for i = 1, . . . , p, the estimator θ̂b is
asymptotically normal with expectation θ (at the model) and with covariance
matrix (1/b)Σ under whole infinitesimal model. The matrix Σ depends on Ñ ,
q = (q1, . . . , qp)

′ and σ, and is given by

Σ = Σ(Ñ , q;σ) = diag(w1V1(Ñ , q;σ), w2V2(Ñ , q;σ)),(3)

where for j = 1, 2

Vj(Ñ , q;σ) =

[
p∑
i=1

Mj(Ni;σ)

]−1 [ p∑
i=1

1

qi
Mj(Ni;σ)

][
p∑
i=1

Mj(Ni;σ)

]−1
,(4)

while for K ∈ N v, k = K ′1v and α = (α1, α2)
′ ∈ R2

+

M1(K;α) =
1

α2
2

(
diag(K)− α2

1

kα2
1 + α2

2

KK ′
)
,(5)

M2(K;α) =
2

(kα2
1 + α2

2)
2

[
k2α2

1 kα1α2

kα1α2 α2
2

]
+ 2

k − 1

α2
2

[
0 0

0 1

]
.(6)

The constants w1 ≥ 1 and w2 ≥ 1, which can be interpreted as efficiency
coefficients with respect to the maximum likelihood estimator of µ and σ, respec-
tively, depend on chosen functions Φ1, . . . ,Φp. For more details see Bednarski
and Zontek (1996).

3. Main results

For our considerations it is convenient to identify an experimental design with
pair (Ñ , q̃), where q̃ = (b1/b, . . . , bp/b)

′, instead of the original incidence matrix
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N (throughout the paper we assume that b is fixed). Assume we have defined
an estimator θ̂E (we ommite subscript b) of θ for the model associated with an
experimental design E in a class E and suppose we are interesting in estimation of
parametric function C ′θ, where C is (v+2)×r matrix. Take C ′θ̂E as an estimator
of C ′θ. Usually for a given criterion functional f defined on {covθ(C

′θ̂E) : E ∈ E},
an experimental design Eo is said to be optimal in E for estimation of C ′θ, if
f(covθ(C

′θ̂Eo)) is minimum in E for each θ ∈ Θ. However, when the covariance
matrix cannot be explicitely calculated, such definition induce some difficulties.
This is the case when the robust estimator is used. Therefore Zmyślony and
Zontek (1994) have proposed a modification of the above definition, by exchange
covθ(C

′θ̂E) for its approximation given by 1
bC
′Σ(Ñ , q̃;σ)C, where E = (Ñ , q̃).

Since the approximation is based on the asymptotic covariance matrix, an optimal
experimental design will be called asymptotically optimal.

We are interested in two types of criterion functional, the first one is as-
sociated with the trace operation and the second one is based on the matrix
determinant.

Definition 1. An experimental design (Ñ , q̃) in a class E of experimental designs
is called asymptotically A- (D-) optimal in E for a function C ′θ, if

tr[C ′Σ(Ñ , q̃;σ)C] (det[C ′Σ(Ñ , q̃;σ)C])

is minimum in E for every σ ∈ R2
+.

In this paper, we are concentrated only with three cases, namely C ′θ = µ, C ′θ = σ
and C ′θ = θ.

For fixed v, b and k let us consider the following classes of experimental
designs

Eo = {(Ñ , q̃) : Ñ ∈Mk(p), q̃ ∈ Sp+, p = 1, . . . , b},

E?o = {(Ñ , q̃) : Ñ ∈M?
k(p), q̃ ∈ S

p
+, p = 1, . . . , b},

E1 = {(Ñ , (1/b)1p) : Ñ ∈M?
k(p), p = 1, . . . , b}

and

E2 = {(Ñ , 1) : Ñ ∈M?
k(1)},

where

Mk(p) = {(K1,K2, . . . ,Kp) : Kj ∈ N v, K ′j1v ≤ k, j = 1, . . . , p},

while

M?
k(p) = {K ∈Mk(p) : K ′1v = k1p}.
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Zmyślony and Zontek (1994) have characterized experimental designs which are
asymptotically A- as well as D-optimal in E?o for σ. Moreover, they have proved
that the orthogonal design is asymptotically A- as well as D-optimal in E1 for µ.
In this paper we extend these results by considering A- and D-optimality in a
broader class of designs for µ and σ, and we generalize them to the case of the
function C ′θ = θ.

It is intuitively clear that when we give in addition observations in some
subgroup of blocks, then we should get better experimental design. For p = 1
this is stated in the following lemma.

Lemma 2. For any K1, K2 ∈ N v and for any α = (α1, α2)
′ ∈ R2

+ we have

(i) if K1 −K2 ∈ N v, then M1(K1;α) ≥M1(K2;α),

(ii) if (K1 −K2)
′1v > 0, then M2(K1;α) > M2(K2;α).

Proof. To prove the first part of the lemma, it is sufficient to consider a case
when K1 = K2 + T , where T ∈ N v and T ′1v = 1. Using diag(T ) = TT ′, simple
algebra shows that

M1(K1;α)−M1(K2;α) =
1

α2
2[(κ+ 1)α2

1 + α2
2](κα

2
1 + α2

2)
BB′,

where κ = K ′21v, while B = α2
1K2 − (κα2

1 + α2
2)T , which terminates the proof of

part (i).

The second implication we show for K1 and K2 such that K ′11v = K ′21v + 1.
It follows easily for general K ′11v and K ′21v by induction. In the considered case
one can veryfy that

M2(K1;α)−M2(K2;α) =
2

((κ+ 1)α2
1 + α2

2)
2(κα2

1 + α2
2)

2
(BB′ + 2κα2

1D),

where κ = K ′21v, B = 1
α2

(α1α
3
2 , −κ(κ+ 1)α4

1 + α4
2)
′, while

D =

[
(κ+ 1)α2

1α
2
2 + α4

2 0

0 (κ+ 1)(2κ+ 1)α4
1 + (4κ+ 3)α2

1α
2
2 + 2α4

2

]
.

This finishes the proof.

The second lemma will be used on a step of construction of an experimental
design better than a given block design in Eo \ E∗o .
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Lemma 3. Let W1, . . . ,Wp be n.n.d. m×m matrices such that W1+ . . .+Wp > 0
and let u = (u1, . . . , up)

′ ∈ Sp+. Then

p∑
i=1

uiWi ≥

(
p∑
i=1

Wi

)(
p∑
i=1

1

ui
Wi

)−1( p∑
i=1

Wi

)
.(7)

Proof. It is sufficient to prove that for u ∈ Sp+

p∑
i=1

uiWi ≥

(
p∑
i=1

1

ui
Wi

)−1
,(8)

where W1, . . . ,Wp satisfy an additional condition that W1 + . . .+Wp = Im. First
we show this inequality for p = 2.

Let W1 =
∑m

j=1 λjTjT
′
j be a spectral decomposition of W1, where λj ∈ [0, 1]

is an eigenvalue corresponding to an eigenvector Tj of W1, j = 1, . . . ,m. Since
W2 = Im −W1 =

∑m
j=1(1− λj)TjT ′j we get that

u1W1 + (1−u1)W2 −
(

1

u1
W1 +

1

1−u1
W2

)−1
=

m∑
j=1

(2u1−1)2λj(1−λj)
u1(1−λj) + (1−u1)λj

TjT
′
j

is n.n.d. for u1 ∈ (0, 1), which shows (8) for p = 2.
Using this we easily see that for p > 2

p∑
i=1

uiWi = u1W1 + (1− u1)
p∑
i=2

ui
1− u1

Wi

≥

(
1

u1
W1 +

1

1− u1

p∑
i=2

ui
1− u1

Wi

)−1
.

According to 0 < ui/(1− u1) < 1, i = 2, . . . , p, it may be concluded that

p∑
i=2

1

ui
Wi ≥

1

1− u1

p∑
i=2

ui
1− u1

Wi,

which terminates the proof.

Under additional assumption that W1 > 0, . . . ,Wp > 0, inequality (7) follows
from inequality due to Kiefer (Lemma 3.2, 1959).

Using above two lemmas we can get the following characterization of asymp-
totically A- as well D- optimal designs for σ
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Theorem 4. An experimental design (Ñ , q̃) is asymptotically A- (D-) optimal
in Eo for σ if and only if (Ñ , q̃) belongs to E1.

Proof. Let Ñ = (N1, . . . , Np) be a matrix in Mk(p) \ M?
k(p) and let q̃ =

(q̃1, . . . , q̃p)
′ ∈ Sp+. We have for each σ in R2

+

V2(Ñ , q̃;σ) ≥

[
p∑
i=1

q̃iM2(Ni;σ)

]−1
> V2(Ñ

?
, 1;σ),

where Ñ
?

is a vector in N v such that Ñ
?
1′v = k. The first inequality follows from

Lemma 3 and the second one from Lemma 2. This imply that no experimental
design in Eo \ E?o is asymptotically A- as well as D-optimal in Eo for σ. Since, as
it is shown in Zmyślony and Zontek (Theorem 1, 1994), an experimental design
(Ñ , q̃) is asymptotically A- as well as D- optimal in E∗o for σ if and only if
(Ñ , q̃) ∈ E1, the assertion follows.

Note that the matrix M2(K,α) given by (6) depends on K through K ′1v. So
arrangement of treatments in blocks is not important, if we are interested in
choosing of asymptotically optimal experimental design for σ.

Lemma 5. Let K = (K1, . . . ,Kp) be an element of Mk(p). If (K?
1 , . . . ,K

?
p) in

M?
k(p) satisfies

K?
i −Ki ∈ N v, i = 1, . . . , p,(9)

then for every u = (u1, . . . , up)
′ ∈ Sp+ and α ∈ R2

+

V1(K,u;α) ≥ V1(K?
u, 1;α),

where K?
u =

∑p
i=1 uiK

?
i .

Proof. Using assumption (9) and Lemma 2 we get that for α ∈ R2
+

M1(K
?
i ;α) ≥M1(Ki;α), i = 1, . . . , p.

Lemma 3 and the above inequality imply now that

p∑
i=1

uiM1(K
?
i ;α) ≥ V −11 (K,u;α).(10)

Since
∑p

i=1 uiK
?
i (K?

i )′ ≥ K?
u(K?

u)′, it follows that

V −11 (K?
u, 1;α) ≥

p∑
i=1

uiM1(K
?
i , α),

which proves the assertion by (10).
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As a consequence of the above lemma we can obtain the following theorem.

Theorem 6. An experimental design (Ñ , q̃) is asymptotically A- (D-) optimal
in Eo for µ if and only if (Ñ , q̃) = ((k/v)1v, 1), i.e. (Ñ , q̃) is the orthogonal
design (N = (k/v)1v1

′
b).

Proof. Zmyślony and Zontek (Lemma 3, 1994) have proved that for every vector
K ∈ Ra+ such that K ′1a = k and for every σ in R2

+ the following inequalities
hold

trV1((k/v)1v, 1;σ) ≤ trV1(K, 1;σ)

and
detV1((k/v)1v, 1;σ) ≤ detV1(K, 1;σ)

with equality if and only if K = (k/v)1v. Combining this with Lemma 5 we get
the statement.

Since only the orthogonal design is asymptitically A- as well as D- optimal in Eo
both for µ and for σ we get the following characterization.

Remark 7. A block design (Ñ , q̃) is asymptotically A- (D-) optimal in Eo for θ
if and only if (Ñ , q̃) = ((k/v)1v, 1).

It is known that the orthogonal block design has a number of good properties
under normality assumptions. We showed another optimal properties of it. The
starting point here is a robust estimator resulting from Fréchet differentiable func-
tional, which implies asymptotic normality with covariance matrix given by (3)
under whole infinitesimal model. So the optimality of the orthogonal design are
valid also when the distribution of Yj , j = 1, . . . , b, comes from a neighbourhood,
induced by the supremum norm, of model (normal) distribution.

References

[1] T. Bednarski and S. Zontek, Robust estimation of parameters in a mixed unbalanced
model , The Annals of Statistics 24 (1996) 1493–1510.

[2] T. Bednarski and S. Zontek, A note on robust estimation of parameters in mixed
unbalanced models, in: Proceedings of the International Conference on Linear Sta-
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