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Abstract

The normality of the log-returns for the price of the stocks is one of the
most important assumptions in mathematical finance. Usually is assumed
that the price dynamics of the stocks are driven by geometric Brownian
motion and, in that case, the log-return of the prices are independent and
normally distributed. For instance, for the Black-Scholes model and for the
Black-Scholes pricing formula [4] this is one of the main assumptions. In
this paper we will investigate if this assumption is verified in the real world,
that is, for a large number of company stock prices we will test the normality
assumption for the log-return of their prices. We will apply the Kolmogorov-
Smirnov [10, 5], the Shapiro-Wilks [17, 16] and the Anderson-Darling [1, 2]
tests for normality to a wide number of company prices from companies
quoted in the Nasdaq composite index.
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1. Introduction

The assumption that the observed data from a certain phenomenon belongs to
a certain distribution is not new and a large number of goodness-of-fit tests can
be applied under different conditions. There is an area where the assumption
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of normality of the data is of extremely importance, the mathematical finance,
where in many models the price of the stocks are assumed to follow a geometric
Brownian motion process and the log-return of those prices will have normal
distribution. This assumption is fundamental, for instance, in the definition of
the Black-Scholes model and in the deduction of the Black-Scholes pricing formula
for European options. Is easy to understand this importance if we refer that the
Black-Scholes pricing formula is widely used in the pricing of derivative products
in financial (derivative) markets and the value of those markets are of the order
of trillions of dollars. We will test the assumption of normality of the log-returns
of the historical stock prices for more than 1000 companies chosen from the
Nasdaq composite index, this data is available from the site finance.yahoo.com.
From the about 2500 companies that compose the index, we choose the ones
with mean daily transaction volume bigger than 50.000 units in the considered
year. We will test the normality for prices with different time interval between
observations: daily prices, weekly prices and monthly prices. We will work with
the data from individual years and from grouped years in a range from January of
2000 to December of 2011. We will test the data using the Kolmogorov-Smirnov,
Shapiro-Wilk/Shapiro-Francia and the Anderson-Darling goodness-of-fit tests for
normality.

2. Geometric Brownian motion and Black-Scholes model

In mathematical finance are widely used models where the stock prices dynamics
are the solution of the stochastic differential equation

dXt = µXtdt+ σXtdBt,(1)

where Bt is the Brownian motion process. For an overview in Brownian motion
and stochastic differential equations, see [8] and [12]. The solution of the preview
equation is the so called geometric Brownian motion

Xt = Xse
(µ− 1

2
σ2)(t−s)+σ(Bt−Bs), s < t,(2)

and from this representation we can write

Ln

(
Xt

Xs

)
=

(
µ− 1

2
σ2
)

(t−s)+σ(Bt−Bs) ∼ N
((
µ− 1

2
σ2
)

(t−s);σ2(t−s)
)

(3)

because Bt − Bs ∼ N(0, t − s). One of the reasons for using this process, when
modeling the stock prices, is because with this process one can introduce the
Black-Scholes model, where a financial market, see [4] or [12], is composed by
two assets, a risk free asset with price dynamics

dRt = rRtdt,(4)
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where r is the risk free rate of return, and a risky asset with price dynamics

dXt = µXtdt+ σXtdBt,(5)

where µ and σ > 0 are real numbers. In this context a contingent claim with
exercise date T is any random variable χ = Φ(XT ), measurable with respect to
the σ-field FT = σ({Xt : 0 ≤ t ≤ T}).

An example of a contingent claim is the European call option with exercise
price K and exercise date T , on the underlying asset with price process X. This
claim is a contract that gives to the older of the option the right, but not the
obligation, to buy one share of the asset X at price K from the underwriter of
the option, at time T (only at the precise time T ).

For a contingent claim Φ(XT ), the arbitrage free price, at time t, is given by
the formula

F (t, x) = e−r(T−t)EQ
t,x[Φ(XT )](6)

with X verifying the equation

dXu = rXudu+ σXudBu, Xt = x,(7)

under the (martingale) measure Q. For a European call option with strike price
K and maturity T this formula gives the well known Black-Scholes formula for
the option price Π(t) = F (t,Xt), where

F (t, x) = xN [d1(t, x)]− e−r(T−t)KN [d2(t, x)].(8)

With N [.] the N(0, 1) distribution function and with

d1(t, x) =
ln(x/K)+

(
r+σ2

2

)
(T−t)

σ
√
T−t ,(9)

d2(t, x) = d1(t, x)− σ
√
T − t.(10)

Being this formula widely used in the pricing of the European options.

3. Goodness-of-fit tests

We will apply several goodness-of-fit tests, both the Kolmogorov-Smirnov and the
Anderson-Darling test use the cumulative distribution function and the empirical
distribution function and are based in a measure of the discrepancy between those
two functions and therefore are considered in the class of “distance testes”. Some
advantages of this kind of tests is that they are easy to compute, they are more
powerful than the χ2 (Chi-Square) test, over a wide range of alternatives, and
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they provide consistent tests. The Shapiro-Wilks (or Shapiro-Francia) is a test
based in the regression between the order statistics of the sample and the mean
value of the order statistics from the tested distribution. This test for normality
has higher power than the previous ones.

3.1. Kolmogorov-Smirnov test

The Kolmogorov-Smirnov statistic provides a mean of testing if a set of obser-
vations are from some completely specified continuous distribution, F0(X). The
test statistic is given by

D = max {|F0(Xk:n)− Sn(Xk:n)| , |F0(Xk:n)− Sn(Xk−1:n)|} ,(11)

where F0 is the distribution function of the distribution being tested, Sn is the
empirical distribution function and X1:n, X2:n, . . . , Xn:n are the order statistics.
Tables with the critical values for this statistic can be found in many texts, for
instance in [3] or [11]. However, when certain parameters of the distribution
need to be estimated from the sample, like the mean or the standard deviation,
then the commonly tabulated critical points are of no use. It seems that if the
test is used with this critical values the results will be conservative, that is, the
probability of rejecting the null hypothesis, when the hypothesis is true, will
be smaller than it should be. One way to overcome this problem is to use the
critical values presented by Lilliefors in [10] and for the ones that don’t like to use
extensive tables is possible to use a modification of the test statistic, see [18], to
dispense the usual tables of percentage points. In our case, only when considering
one year of monthly data we will work with samples of small dimension, for bigger
dimension samples the table values are obtained from simple formulas depending
on the sample dimension n and we do not need to use extensive tables. In our
problem, when testing the normality of the log-returns of the prices we need to
estimate the mean and the standard deviation of the data and because of that we
will use the Lilliefors’s critical values and if the observed value of the D statistic
exceeds the critical value in the table, we will reject the hypothesis that the
observations are from a normal population.

Table 1. Lilliefors’s critical values for samples of dimension n = 12 and n > 30

Percentage points

n α = .20 α = .15 α = .10 α = .05 α = .01

= 12 .199 .212 .223 .242 .275

> 30 .736/
√
n .768/

√
n .805/

√
n .886/

√
n 1.031/

√
n
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3.2. Shapiro-Wilk test

In the Shapiro-Wilk’s test presented in the paper [17] the test statistic W was
constructed through the regression of the order sample statistics on the expected
normal order statistics. The test statistic W is defined by

W =
(
∑n

i=1 aiXi:n)2∑n
i=1(Xi:n − X̄)2

,(12)

where

aT = (a1, a2, . . . , an) =
mTV−1(

mTV−1V−1m
) 1

2

,(13)

when

mT = (m1,m2, . . . ,mn), V = [vij ]n×n(14)

represents the vector of expected values of standard normal order statistics and
the corresponding covariance matrix, respectively. Tables for the expected values
of the order statistics mi, i = 1, . . . , n for sample sizes n = 2(1)100(25)300(50)400
can be found at [7]. The values of a and the percentage points of W are known
up to sample sizes of n = 50 and can be found in the original paper [17]. For
samples of larger dimension an extension of the Shapiro and Wilk’s test can be
found in [13] or in alternative, the Shapiro-Francia statistic W ′ (with simpler
coefficients) introduced in [16] and defined by

W ′ =
(
∑n

i=1 biXi:n)2∑n
i=1(Xi:n − X̄)2

,(15)

where

bT = (b1, b2, . . . , bn) =
mT

(mTm)
1
2

,(16)

can be used. This test is proved to be consistent, see [15]. Values for b can be
computed from the order statistics in [7] and percentage points for W ′ can be
found in [16] for sample sizes n = 35, 50, 51(2)99. For samples of larger dimension,
percentage points can be found in the paper [14] where an extension algorithm
for W ′ is presented. Just for illustrative purposes we present a few percentage
points from the W statistics.
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Table 2. Shapiro-Wilk’s critical values for samples of dimension n = 12 and n = 30

Percentage points

n α = .01 α = .02 α = .05 α = .10

12 .805 .828 .859 .883

30 .900 .912 .927 .939

For this test, small values of W are significant, i.e. indicate non-normality.

3.3. Anderson-Darling test

The Anderson-Darling test is the third and the last goodness-of-fitness test that
we will apply to test for normality. This test, presented in the papers [1] and
[2], compares the observed cumulative distribution function to the expected cu-
mulative distribution function as the Kolmogorov-Smirnov test. This test gives
more weight to the tails of the distribution than the Kolmogorov-Smirnov test,
that is, is more sensitive to deviations in the tails between the empirical and the
theoretical distributions.

The test statistic A2 is defined by

A2 = −n− 1

n

n∑
i=1

(2i− 1) [ln(F0(Xi:n)) + ln(1− F0(Xn−i+1:n))] ,(17)

where, as before F0, represents the distribution function of the distribution to be
tested. In the paper [2], asymptotic critical points for significance levels of 1%, 5%
and 10% are presented, from Monte Carlo simulation, extensive tables of critical
points can be found in [9] or from saddle point approximation to the distribution
function, in [6]. For the situation where the distribution to be tested is normal
or exponential and the parameters of the distribution must be estimated, we can
find critical points in the papers [19, 20] or [21].

Table 3. Anderson-Darling’s asymptotic critical values

Percentage points

α = .01 α = .05 α = .10

3.857 2.492 1.933

For this test, are the large values of A2 that are significant, that is, indicate
non-normality.
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4. Data testing

In this section we will present the results of the normality tests. As we referred,
we tested the assumption of normality of the log-returns of the historical stock
prices for a large number of companies chosen from the Nasdaq composite index.
This data is available from the site finance.yahoo.com and from, something like
2500 companies that compose the index, we choose the ones with daily transaction
volume bigger (in mean) than 50.000 units in the considered data interval. We
will test the normality for prices with different time interval between observations:
daily prices, weekly prices and monthly prices. We will work with the data from
individual years and from grouped years in a range from the beginning of 2000
to the end of 2011. We will test the data using the three goodness-of-fit tests for
normality presented in the previous section.

First, we considered the daily prices from each one of the years of 2005
through 2011, as we referred, in each year we only test the data from the com-
panies with daily transaction volume bigger than 50.000 unit in that year, this
number of selected companies will be represented by N . After getting a large
majority of rejected samples we decide to repeat the normality tests for weekly
data. The results obtained will be presented in the following tables.

Using daily and weekly prices, the Kolmogorov-Smirnov test and a level of
significance of 1% we get the results presented in Table 4.

Table 4. Total (and percentage) of samples rejected by the K.S. test for normality at 1%
level of significance (daily and weekly prices)

Number of rejected companies % of rejected companies

Year N Daily Prices Weekly Prices Daily Prices Weekly Prices

2005 1029 730 149 70.94% 14.48%

2006 1162 835 150 71.86% 12.91%

2007 1322 1038 216 78.52% 16.34%

2008 1366 1163 288 85.14% 21.08%

2009 1385 1067 201 77.04% 14.51%

2010 1471 927 171 63.02% 11.62%

2011 1568 1128 211 71.94% 13.46%

2007-2011 1322 1321 1037 99.92% 78.44%

Using daily and weekly prices, the Shapiro-Wilk test and a level of significance
of 1% we get the results presented in Table 5 and for the Anderson-Darling test
the results are presented in Table 6.



54 P.P. Mota

Table 5. Total (and percentage) of samples rejected by the S.W. test for normality at 1%
level of significance (daily and weekly prices)

Number of rejected companies % of rejected companies

Year N Daily Prices Weekly Prices Daily Prices Weekly Prices

2005 1029 917 310 89.12% 30.13%

2006 1162 1035 301 89.01% 25.90%

2007 1322 1240 422 93.80% 31.92%

2008 1366 1324 499 96.93% 36.53%

2009 1385 1278 387 92.27% 27.94%

2010 1471 1205 332 81.92% 22.57%

2011 1568 1458 389 92.98% 24.81%

2007-2011 1322 1322 1241 100% 93.87%

Table 6. Total (and percentage) of samples rejected by the A.D. test for normality at 1%
level of significance (daily and weekly prices)

Number of rejected companies % of rejected companies

Year N Daily Prices Weekly Prices Daily Prices Weekly Prices

2005 1029 863 244 83.87% 23.71%

2006 1162 972 229 83.65% 19.71%

2007 1322 1196 354 90.47% 26.78%

2008 1366 1292 462 94.58% 33.82%

2009 1385 1261 300 91.05% 21.66%

2010 1471 1166 276 79.27% 18.76%

2011 1568 1387 315 88.46% 20.09%

2007-2011 1322 1322 1196 100% 90.47%

Looking at the results from all the normality tests, it seems reasonable to conclude
that the daily data in all the considered years do not follow normal distributions.
However, when we consider weekly prices, in the same years, the percentage of
company prices where the normal assumption is rejected is much smaller. Then
a question arises, the reason for the high/low percentage of rejections is because
we consider daily/weekly prices or that difference is due to the difference in the
samples dimension? When we consider daily data, we consider ±252 observations
but when we consider weekly prices the sample dimension is 52. To answer this
question we repeat the tests using weekly prices from 2007 to 2011, that is,
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for samples with dimension 5 × 52 = 260 and in that situation high rejection
percentages are obtained again, as can be verified in the last line in the previous
Tables (4, 5 and 6). So it seems that weekly data can be assumed to be normal
distributed only when we have small samples. Finally, putting the question on
the other way around, that is, what will happen to small samples of daily data?
Well, for samples with smaller dimension corresponding to daily prices for the
different quarters of the different years of 2010 and 2011 (samples of dimension
±63), we obtain the results that we present in the Table 7.

Table 7. Samples rejected by the three tests for normality, at 1% level of significance, for
daily prices for each quarter of the years of 2010 and 2011

Number of rejected companies % of rejected companies

Quarter N K.S. S.W. A.D. K.S. S.W. A.D.

First 2010 1471 357 612 503 24.27% 41.60% 34.19%

Second 2010 1471 1456 1550 1539 92.86% 98.85% 98.15%

Third 2010 1471 1340 1455 1435 91.09% 98.91% 97.55%

Fourth 2010 1471 418 669 570 28.42% 45.48% 38.75%

First 2011 1568 384 648 532 24.49% 41.33% 33.93%

Second 2011 1568 1065 1407 1334 67.92% 89.73% 85.08%

Third 2011 1568 702 1081 969 44.77% 68.94% 61.80%

Fourth 2011 1568 228 444 329 14.54% 28.32% 20.98%

For small samples of daily prices we can observe radical changes from one quarter
to the other. In some quarter we observe the same behavior as for the weekly
prices in small samples, that is, small percentages of rejection, but in others we
continue to observe high percentages of rejection of normality.

For a final confirmation of the normality failure, we also tested monthly
prices. For monthly prices, we start with small samples, in this situation just
considering the data from each year (12 observations) and then we grouped several
years in order to build larger samples (2007 − 2011 ⇒ 60 observations; 2005 −
2011 ⇒ 84 observations; 2000 − 2011 ⇒ 144 observations). The results are
presented in Table 8.

Once again, as the samples dimension increases also the percentage of nor-
mality rejection increases just as happened in the daily and weekly prices sets of
data.

Observation 1. The reason for the decreasing number of selected companies to
test, when we go from the year of 2011 to the year of 2000, is because we start by
considering the companies that belong to the Nasdaq composite index in the year
of 2011 but not all those companies belong to the index in the previous years.
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Table 8. Samples rejected by the three tests for normality, at 1% level of significance, for
monthly prices in different years

Number of rejected companies % of rejected companies

Year(s) N K.S. S.W. A.D. K.S. S.W. A.D.

2005 1029 24 40 20 2.33% 3.89% 1.94%

2006 1162 19 38 28 1.64% 3.27% 2.41%

2007 1322 22 57 35 1.66% 4.31% 2.65%

2008 1366 38 69 47 2.78% 5.05% 3.44%

2009 1385 38 76 50 2.74% 5.49% 3.61%

2010 1471 18 41 31 1.22% 2.79% 2.11%

2011 1568 25 64 42 1.59% 4.08% 2.68%

2007-2011 1322 188 416 296 14.22% 31.47% 22.39%

2005-2011 1029 224 428 337 21.77% 41.59% 32.75%

2000-2011 752 347 551 478 46.14% 73.27% 63.56%

5. Final remarks

The normality of the logarithm of the stock prices is widely accepted in the finan-
cial models. However, our study suggests that the assumption of normality will
fail for an high percentage of companies prices from the Nasdaq composite index.
This seems to be true even when we consider different observations interval, that
is, when we consider weekly prices or even monthly prices. In fact, the number
of observations, that is, the sample dimension is more important when testing
the normality than the fact of considering daily, weekly or monthly prices. One
can argue that to use the pricing Black-Scholes formula we can use the implied
volatility (σ parameter) and in that approach we do not need to use the historical
prices to estimate it. Even so, the Black-Scholes formula is deduced supposing
that the stock prices follows the geometric Brownian motion dynamics and than
the normality assumption must be verified.
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