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Abstract

We study different types of asymptotic behaviour in the set of (infinite di-
mensional) nonhomogeneous chains of stochastic operators acting on L1(µ)
spaces. In order to examine its structure we consider different norm and
strong operator topologies. To describe the nature of the set of nonhomoge-
neous chains of Markov operators with a particular limit behaviour we use
the category theorem of Baire. We show that the geometric structure of
the set of those stochastic operators which have asymptotically stationary
density differs depending on the considered topologies.

Keywords: Markov operator, asymptotic stability, residuality, dense Gδ.

2010 Mathematics Subject Classification: Primary: 47A35, 47B65;
Secondary: 60J10, 54H20.

1. Introduction

The study of chains of Markov operators has become a subject of interest in regard
to their applications in many different areas of science and technology. Markov
operators are commonly used to describe phenomena involving a law of conserva-
tion of a certain quantity, e.g. mass, energy, the number of particles in physical
or chemical processes. Typical questions appear in the context of probability
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W. Bartoszek. The author wishes to express her appreciation to Professor Bartoszek for his
advice and helpful suggestions.
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theory and concern the evolution of a density (probability distribution) of such
a quantity. The case when the chain is homogeneous in time is well-understood
and has a comprehensive literature (cf. [7, 8, 10]). In particular, the asymptotic
behaviour of iterates of Markov operators has been intensively studied. The er-
godic structure of homogeneous chains is fully described including probabilistic,
lattice and spectral conditions for convergence of iterates with respect to all stan-
dard topologies. In the case of the class of chains nonhomogeneous in time the
situation is not so transparent, since no proper notion of a stationary density can
be defined (in general). Thus, in order to describe the properties of a nonhomo-
geneous chain one may study its asymptotic behaviour, which is understood as
the study of a ”generalized concept” of stationarity. Namely, we may ask whether
there exists a common limiting density or, at least, if the influence of the state of
the process at the time m on its future states decreases to zero with the passage
of time. Various gradations of this asymptotic properties may be considered de-
pending on the mode of convergence of the iterates of the Markov operator. In
this paper we focus solely on the uniform and strong modes of convergence.

Differences between the classes of homogeneous and nonhomogeneous chains
attracted the attention of probabilists in the second half of the 20th century.
For example, in [6] Iosifescu observed that unlike the homogenous case, uniform
asymptotic stability (strong ergodicity) is not a ”natural” concept for nonhomo-
geneous chains. Thus, given a class of possible evolutions of Markov operators,
i.e., a class of nonhomogeneous chains of Markov operators with a particular
asymptotic behaviour, one may ask about its topological size. Such a description
is based on the category theorem of Baire. Namely, the set is recognized as a
large object if it is residual (it contains a dense Gδ set). Thus, generic evolutions
are those which belong to a residual subset. The aim of this paper is to define
different types of asymptotic behaviour of nonhomogeneous chains of Markov op-
erators acting on L1(µ) spaces and to determine which one of them is prevalent.

The geometric structure of infinite dimensional nonhomogeneous Markov
chains defined on the `1 space of all absolutely summable real sequences was
intensively studied in [12]. Since `1 = L1(N, 2N, counting measure ), then the
results included in this article are generalizations of the results obtained in [12].
For the convenience of the reader most of the theorems are proved in full detail.
This paper may be considered as the first step to generalizations of some results
included in [3]. It is worth noticing that in [11] the asymptotic properties of
nonhomogeneous discrete Markov processes with general state space L1(µ) were
studied and the results obtained were applied in the investigation of the limit be-
haviour of the so-called quadratic stochastic processes which are concerned with
genetic models.

Let (X,A, µ) be a separable σ-finite measure space. Throughout the paper
we consider the (separable) Banach lattice of real and A-measurable functions
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f such that |f | is µ-integrable and we denote it by L1(µ). By ‖ · ‖1 we denote
the relevant norm. We say that a linear operator P : L1 (µ) → L1 (µ) is Markov
(or stochastic) if

Pf ≥ 0 and ‖Pf‖1 = ‖f‖1

for all f ≥ 0, f ∈ L1(µ). By D = D(X,A, µ) we denote the set of all densities
on X, i.e.,

D =
{
f ∈ L1 (µ) : f ≥ 0, ‖f‖1 = 1

}
.

In view of stochasticity of P we have that ‖|P |‖ = 1 (where ‖| · |‖ stands for
the norm operator) and P (D) ⊂ D. The sequence of such operators denoted by
P := (Pm,m+1)m≥0 is called a discrete time nonhomogeneous chain of Markov
operators. For any natural numbers 0 ≤ m < n we set

Pm,n = Pm,m+1 ◦ Pm+1,m+2 ◦ · · · ◦ Pn−1,n.

If for each m ≥ 0 one has Pm,m+1 = P , then P = (P )m≥0 is called a homogeneous
chain of Markov operators. The set of all chains of Markov operators (including
homogeneous) will be denoted by S , i.e.,

S =
{

P =
(
Pm,m+1

)
m≥0 : Pm,m+1 are Markov operators

}
.

Let t ∈ [0, 1] be given. A convex combination T(t) of two chains of Markov
operators P and R ∈ S is defined as follows:

Tm,m+1 (t) = tPm,m+1 + (1− t)Rm,m+1.

Note that T(t) ∈ S for every t ∈ [0, 1] and that a mapping [0, 1] 3 t 7→ T(t) ∈ S
is continuous when S is equipped with suitable topology. Moreover, T(0) = R
and T(1) = P. Thereby, S has an affine structure and it is arcwise connected.

Throughout the paper we write N0 = N ∪ {0}.
We will endow the set S with metric structures. Given P,R ∈ S let us consider:

(1) the sup norm operator topology induced by the metric

dn. sup(P,R) = sup
m

∥∥∣∣Pm,m+1 −Rm,m+1
∣∣∥∥ ,

(2) the
∑

norm operator topology induced by the metric

dn.
∑(P,R) =

∞∑
m=0

1

2m+1

∥∥∣∣Pm,m+1 −Rm,m+1
∣∣∥∥ ,
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(3) the
∑

sup strong operator topology induced by the metric

dso. sup(P,R) =
∞∑
l=0

1

2l
sup
m

∥∥Pm,m+1fl −Rm,m+1fl
∥∥
1
,

where {f0, f1, . . .} is a fixed countable and linearly dense subset of D,

(4) the
∑∑

strong operator topology induced by the metric

dso.
∑(P,R) =

∞∑
m,l=0

1

2m+l+1

∥∥Pm,m+1fl −Rm,m+1fl
∥∥
1
,

where {f0, f1, . . .} is a fixed countable and linearly dense subset of D.

Note that dso. sup(Pk,R) → 0 as k → ∞ if and only if for every f ∈ L1(µ)

(f ∈ D) and any m ∈ N0 one has limk→∞ supm ‖P
m,m+1
k f − Rm,m+1f‖1 = 0.

Moreover, the topologies generated by dso. sup and dso.
∑ do not depend on the

choice of a sequence {f0, f1, . . .}.
Clearly, dn. sup generates the strongest topology and dso.

∑ generates the
weakest. However, it should be emphasized that metrics dn.

∑ and dso. sup are

not comparable. In order to observe it, consider Pj = (Pm,m+1
j )m≥0 ∈ S defined

as follows:

Pm,m+1
j =

{
P, if 0 ≤ m < j,

I, if m ≥ j,

where I stands for the identity operator and P = (P )m≥0 is such that P 6= I.
Then

dn.
∑(Pj ,P) =

∞∑
m=0

1

2m+1

∥∥∥∣∣∣Pm,m+1
j − Pm,m+1

∣∣∣∥∥∥
=

j−1∑
m=0

1

2m+1
‖|P − P |‖+

∞∑
m=j

1

2m+1
‖|I − P |‖

=
1

2j
‖|I − P |‖ → 0 as j →∞.

On the other hand, for a given fixed countable and dense subset {f0, f1, . . .} of
D we have

dso. sup(Pj ,P) =

∞∑
l=0

1

2l
sup
m

∥∥∥Pm,m+1
j fl − Pm,m+1fl

∥∥∥
1

=

∞∑
l=0

1

2l
‖fl − Pfl‖1 > 0.
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Thus dso. sup(Pj ,P) 9 0 as j → ∞. Thereby, dn.
∑ is not stronger than dso. sup.

Now we shall see that dso. sup is not stronger than dn.
∑. In order to prove it

observe that since the measure µ is σ-finite, there exists a sequence {Bk}, Bk ∈ A,
such that Bi ∩Bj = ∅ for i 6= j and

X =
∞⋃
k=0

Bk, 0 < µ (Bk) <∞ for all k ∈ N0.

Let gk ∈ D be such that the essential support supp gk := {x ∈ X : gk(x) 6= 0} ⊆
Bk for any k ∈ N0. For any f ∈ L1(µ) denote

ak (f) =

∫
Bk

fdµ.

Note that
∑∞

k=0 ak(f) = 1 if f ∈ D. Then we can define Pj = (Pm,m+1
j )j≥0 ∈ S

as follows:

Pm,m+1
j f = Pjf = f1⋃j

k=0Bk
+

∞∑
k=j+1

ak (f) · g0.

Let I = (I, I, . . .) ∈ S , where as before I stands for the identity operator. Then

dso. sup(Pj , I) =
∞∑
l=0

1

2l
sup
m

∥∥∥Pm,m+1
j fl − Ifl

∥∥∥
1

=
∞∑
l=0

1

2l
‖Pjfl − fl‖1

=

∞∑
l=0

1

2l

∥∥∥∥∥∥fl1⋃j
k=0Bk

+
∞∑

k=j+1

ak (fl) g0 − fl1⋃j
k=0Bk

− fl1⋃∞
k=j+1Bk

∥∥∥∥∥∥
1

≤
∞∑
l=0

1

2l

 ∞∑
k=j+1

ak(fl) ‖g0‖1 +
∥∥∥fl1⋃∞

k=j+1Bk

∥∥∥
1


=
∞∑
l=0

1

2l

 ∞∑
k=j+1

ak (fl) +

∫
⋃∞

k=j+1Bk

fldµ


=

∞∑
l=0

1

2l
· 2

∞∑
k=j+1

ak (fl)

=

∞∑
l=0

1

2l−1

(
1−

j∑
k=1

ak(fl)

)
→ 0 as j →∞.
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On the other hand,

dn.
∑(Pj , I) =

∞∑
m=0

1

2m+1
‖|Pm,m+1

j − I|‖

=

( ∞∑
m=0

1

2m+1

)
‖|Pj − I|‖ = 1 · 2 = 2 9 0 as j →∞.

Therefore dso. sup is not stronger than dn.
∑. It follows that the metrics dn.

∑ and
dso. sup are not comparable. The relationships between the considered metrics are
illustrated in the Figure 1.

4

44

4

dn. sup

dso. sup

dso.
∑

dn.
∑

Figure 1. The relationships between the metrics dn. sup, dn.
∑, dso. sup, dso.

∑.

Let us note that in the class of homogeneous chains of Markov operators, metrics
dn. sup and dn.

∑ are equivalent. In fact, if P = (P )m≥0, R = (R)m≥0 ∈ S ,
then dn. sup(P,R) = dn.

∑(P,R) = ‖|P − R|‖. Similarly we find that in the
homogeneous case metrics dso. sup and dso.

∑ are equivalent and for any P =

(P )m≥0, R = (R)m≥0 ∈ S one has dso. sup(P,R) = dso.
∑(P,R) =

∑∞
l=0

1
2l
‖Pfl−

Rfl‖1, where {f0, f1, . . .} is a fixed countable and linearly dense subset of D. This
supports our remark that the nonhomogeneous case is more complex than the
homogeneous one.

In what follows we study different types of asymptotic behaviour of nonho-
mogeneous chains of stochastic operators as well as residualities in the set S .
We shall see that the geometric structure of the set of those stochastic operators
which have asymptotically stationary density differs depending on the considered
topologies. We prove that the set of those Markov operators which do not possess
limiting density is dense and its interior is nonempty in the topology induced by
the metric dn. sup. On the other hand, it occurs that the set of those operators
for which the limiting density exists is dense while S is endowed with topology
induced by the metric dn.

∑. We also examine the set of Markov operators which
we call (uniformly or strongly, if studied in norm or strong operator topology
respectively) almost asymptotically stable and we prove that it forms a residual
subset for both norm and strong operator topologies.
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Note that dn. sup is the most relevant metric (topology) in studying the limit be-
haviour of nonhomogeneous chains of stochastic operators. It should be empha-
sized that, in contrast to the homogeneous case, the property of denseness of the
set of nonhomogeneous chains of stochastic operators with a particular asymp-
totic behaviour does not suffice to understand its ”size”. It derives from the fact
that in the case of

∑
sup and

∑∑
strong operator topologies the denseness of

the complement of the set mentioned above can always be proved by modifying
on the tail so-called sweeping operators or a fixed stochastic projection. There-
fore, in order to describe the nature of the set we use the category theorem of
Baire. This is because the space S equipped with any of the metrics (1)–(4) is
complete and the classical Baire theorem is applicable.

The Baire category of asymptotic stability for homogeneous Markov chains
was worked out in e.g. [2, 9, 13]. It should be clearly understood that our results
are not a direct analogy of what was obtained in these works. In particular,
it was proved in [13] that uniformly asymptotically stable (quasi-compact) ho-
mogeneous Markov chains form a dense Gδ subset in norm operator topology.
In our nonhomogeneous case, the set of those chains of operators which are not
uniformly asymptotically stable has a nonempty interior.

There are more relevant works in the literature dealing with the topic of
the limit behaviour of nonhomogeneous chains of Markov operators. The reader
should be warned that authors do not always use the same names for the same
notions. For example, in [5] and [6] strong ergodicity is what we call uniform
asymptotic stability and weak ergodicity is what we refer to as almost uniform
asymptotic stability. Some authors apply the terminology derived from the er-
godic theory to the theory of stochastic processes and denominate what we call
asymptotic stability by mixing (cf. [2, 3, 9, 12]). See [5] for detailed classification
of different types of asymptotic behaviour of nonhomogeneous Markov chains.

2. Uniform asymptotic stability

In this section we examine the strongest case of asymptotic stability of chains of
Markov operators, i.e., uniform asymptotic stability. We start with

Definition. A nonhomogeneous chain of Markov operators P is called uniformly
asymptotically stable if there exists a unique f∗ ∈ D such that for every m ∈ N0

lim
n→∞

sup
f∈D
‖Pm,nf − f∗‖1 = 0.

The set of all uniformly asymptotically stable chains of Markov operators is de-
noted by Suas.
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Note that uniformly asymptotically stable chains of operators possess common
limiting density and the mode of convergence is uniform. The following theorem
is concerned with the prevalence problem in the set S .

Theorem 1. The set S c
uas of all Markov operators which are not uniformly

asymptotically stable is a sup norm topology dense subset of S (i.e., in dn. sup).
Moreover, in this case its interior IntS c

uas 6= ∅.

Proof. Let P ∈ S and 0 < ε < 1 be taken arbitrarily. As before, since the
measure µ is σ-finite, there exists a sequence {Bk}, Bk ∈ A, such that Bi∩Bj = ∅
for i 6= j and

X =
∞⋃
k=0

Bk, 0 < µ (Bk) <∞ for all k ∈ N0.

Let gk ∈ D be such that supp gk = {x ∈ X : gk(x) 6= 0} ⊆ Bk for any k ∈ N0.
Then we can define R ∈ S as follows: for any f ∈ L1 (µ),

Rm,m+1f =
∞∑

j=m+1

aj−m−1 (f) · gj ,

where aj (f) =
∫
Bj
fdµ. Note that

∑∞
j=0 aj (f) = 1 if f ∈ D. Consider a convex

combination

Pm,m+1
ε = (1− ε)Pm,m+1 + εRm,m+1.

Clearly, Pε = (Pm,m+1
ε )m≥0 ∈ S . We have

dn.sup(Pε,P) = sup
m

∥∥∣∣(1− ε)Pm,m+1 + εRm,m+1 − Pm,m+1
∣∣∥∥

= ε sup
m

∥∥∣∣Pm,m+1 −Rm,m+1
∣∣∥∥ ≤ 2ε.

It remains to show that Pε is not uniformly asymptotically stable. Suppose
that, on the contrary, there exists f∗ ∈ D such that for every f ∈ D we have
limn→∞ P

m,n
ε f = f∗. Since f ∈ D, there exists M ∈ N0 such that∫

M⋃
k=0

Bk

f∗dµ > 1− ε.

Hence ∫
M⋃
k=0

Bk

Pm,nε fdµ
n→∞−−−→

∫
M⋃
k=0

Bk

f∗dµ > 1− ε.
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On the other hand, if n > m > M , then∫
M⋃
k=0

Bk

Pm,n+1
ε fdµ = 1−

∫
∞⋃

k=M+1
Bk

Pm,n+1
ε fdµ

= 1−
∫

∞⋃
k=M+1

Bk

(
(1− ε)Pn,n+1 + εRn,n+1

)
(Pm,nε f) dµ

≤ 1− ε
∫

∞⋃
k=M+1

Bk

Rn,n+1 (Pm,nε f) dµ = 1− ε.

It follows that S c
uas is dn. sup dense in S .

To show that IntS c
uas 6= ∅ for the sup norm topology (i.e., in dn. sup) consider

the open ball

K(R, 1) := {T ∈ S : dn. sup(T,R) < 1} ,

where R is defined as before. If T ∈ K(R, 1), then for some 0 < ε < 1

sup
f∈D

∥∥Tm,m+1f −Rm,m+1f
∥∥
1
≤ dn. sup(T,R) = 1− ε.

Hence for every m+ 1 > M and every f ∈ D,∫
M⋃
k=0

Bk

T 0,m+1fdµ ≤ dn. sup(T,R) = 1− ε.

Thus,

sup
M∈N

lim sup
m→∞

∫
M⋃
k=0

Bk

T 0,m+1fdµ ≤ dn. sup(T,R) = 1− ε < 1,

and therefore T has no ”invariant” densities (common limiting density). It follows
that T ∈ S c

uas.

In the next result we shall see that topologies on S generated by dn. sup and dn.
∑

differ. Namely Suas is large for dn.
∑. In fact, we have

Proposition 2. The set Suas is
∑

norm topology dense in S (i.e., in dn.
∑).

Proof. Let P ∈ S and 0 < ε < 1 be taken arbitrarily. There exists M ∈ N0

such that 1
2M

< ε. Define Pε ∈ S as follows:

Pm,m+1
ε =

{
Pm,m+1, if m ≤M,

E, if m > M,
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where Ef = (
∫
X fdµ)g for some fixed g ∈ D and any f ∈ L1(µ). Obviously,

E = (Em,m+1)m≥0 ∈ S , where for every m ∈ N0, E
m,m+1 = E. Then for every

m ∈ N0

lim
n→∞

‖|Pm,nε − E|‖ = 0.

Therefore Pε is uniformly asymptotically stable. Clearly,

dn.
∑(P,Pε) =

∞∑
m=M+1

1

2m+1

∥∥∣∣Pm,m+1 − E
∣∣∥∥ ≤ 1

2M
< ε,

which completes the proof.

We will now discuss a weaker case of asymptotic stability of chains of Markov
operators, i.e., almost uniform asymptotic stability. We begin with

Definition. A nonhomogeneous chain of Markov operators P is said to be almost
uniformly asymptotically stable if for every m ∈ N0

lim
n→∞

sup
f,g∈D

‖Pm,nf − Pm,ng‖1 = 0.

The set of all almost uniformly asymptotically stable Markov operators is denoted
by Sa.uas.

Repeating arguments from [1] or following the proof of Theorem 4.6 in [12] (cf.
[8]), we obtain a useful characterization of almost uniformly asymptotically stable
nonhomogeneous chains of Markov operators.

Theorem 3. Let P ∈ S . If there exists a sequence (λn)n∈N0, 0 ≤ λn < 1,
satisfying

∞∑
n=0

λn =∞

and such that for every f , g ∈ D we have∥∥Pn,n+1f ∧ Pn,n+1g
∥∥
1
≥ λn for all n ∈ N0,

then P is almost uniformly asymptotically stable (here ∧ stands for the ordinary
minimum in L1(µ)).

Almost uniform asymptotic stability means that the influence of the state of the
process at the time m on its future states decreases (uniformly) to zero with the
passage of time. Thus, in the case of nonhomogeneous chains of Markov operators
this property is essentially weaker than the uniform asymptotic stability which
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additionally claims the existence of a ”stationary” (common limiting) density. In
the class of homogeneous chains of Markov operators notions of uniform asymp-
totic stability and almost uniform asymptotic stability coincide. Indeed, if there
exists ε > 0 such that for some n0 and every f , g ∈ D we have ‖Pn0f∧Pn0g‖1 ≥ ε,
then repeating arguments from [1] we obtain that ‖Pn0f−Pn0g‖1 ≤ (1−ε)‖f−g‖1
and we conclude that the mapping P is a strict contraction. Applying the Banach
fixed point theorem there exists a unique P - invariant density f∗ ∈ D such that
limn→∞ ‖Pnf − f∗‖1 = 0, where f ∈ D is arbitrary. It follows that

sup
f∈D
‖Pnf − f∗‖1 ≤ (1− ε)

⌊
n
n0

⌋
· ‖f − f∗‖ ≤ 2 (1− ε)

⌊
n
n0

⌋
→ 0

uniformly for f ∈ D. Hence in the class of homogeneous chains of Markov
operators

Sa.uas = Suas = {P ∈ S : ∃n ∃ε>0 ∀f,g∈D ‖Pnf ∧ Png‖1 ≥ ε} ,

which implies that in the homogeneous case the set Sa.uas is norm open.

The following theorem states that almost uniformly asymptotically stable
nonhomogeneous chains of Markov operators are generic. Its proof may be par-
tially derived from Theorem 3, but for the convenience of the reader we give it
in full detail.

Theorem 4. Sa.uas is a dense Gδ subset of S in both sup norm and
∑

norm
topologies (i.e., in dn. sup and dn.

∑ respectively).

Proof. First we will show that Sa.uas is a dn. sup dense subset of S (the denseness
in the metric dn.

∑ follows from the fact that dn. sup is stronger than dn.
∑). To

this end, given an arbitrary P ∈ S and 0 < ε < 1, consider a convex combination

Pm,m+1
ε = (1− ε)Pm,m+1 + εE,

where as before E = (Em,m+1)m≥0 ∈ S is such that Em,m+1 = E for every m ∈
N0 and Ef = (

∫
X fdµ)g for some fixed g ∈ D and any f ∈ L1(µ). Clearly, Pε ∈

S and dn. sup(P,Pε) < 2ε. To prove that Pε is almost uniformly asymptotically
stable notice that for any densities f and g ∈ D we have∥∥Pn−1,nε f − Pn−1,nε g

∥∥
1

= (1− ε)
∥∥Pn−1,nf − Pn−1,ng∥∥

1

= (1− ε)
∥∥Pn−1,n(f − g)

∥∥
1

≤ (1− ε) ‖f − g‖1
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and therefore

‖Pm,nε f − Pm,nε g‖1 =
∥∥Pn−1,n (Pm,n−1f − Pm,n−1g)∥∥

1

≤ (1− ε)
∥∥Pm,n−1f − Pm,n−1g∥∥

1
.

Iterating the last inequality for any f, g ∈ D we have

‖Pm,nε f − Pm,nε g‖1 ≤ (1− ε)n−m ‖f − g‖1 .

Hence

‖Pm,nε f − Pm,nε g‖1 ≤ 2(1− ε)n−m

for any f, g ∈ D. Thus,

sup
f,g∈D

‖Pm,nε f − Pm,nε g‖1 ≤ 2 (1− ε)n−m .

Therefore,

lim
n→∞

sup
f,g∈D

‖Pm,nε f − Pm,nε g‖1 = 0

and the denseness of the set Sa.uas in S is proved for both sup norm and
∑

norm topologies.

To show Gδ-ness of Sa.uas observe that∥∥Pm,n+1f − Pm,n+1g
∥∥
1

=
∥∥Pn,n+1 (Pm,nf)− Pn,n+1 (Pm,ng)

∥∥
1

≤ ‖Pm,nf − Pm,ng‖1 ,

which means that the sequence ‖Pm,nf − Pm,ng‖1 is nonincreasing. It follows
that for the fixed m the sequence supf,g∈D ‖Pm,nf − Pm,ng‖1 is nonincreasing as
well. We obtain that

Sa.uas =

{
P ∈ S : ∀m∈N0 lim

n→∞
sup
f,g∈D

‖Pm,nf − Pm,ng‖1 = 0

}

=
∞⋂
m=0

∞⋂
k=1

∞⋃
n=m+1

{
P ∈ S : sup

f,g∈D
‖Pm,nf − Pm,ng‖1 <

1

k

}
.
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Note that for fixed m < n the function

S 3 P 7→ sup
f,g∈D

‖Pm,nf − Pm,ng‖1

is dn.
∑ continuous. Hence Sa.uas is a Gδ set for the metric dn.

∑ (and it is Gδ
set for the stronger metric dn. sup).

The following example shows that (in contrast to the homogeneous case) in the
class of nonhomogeneous chains of Markov operators the set Sa.uas is not open
(even though it is a dense Gδ subset of S ).

Example 5. As before, since the measure µ is σ-finite, there exists a sequence
{Bk}, Bk ∈ A, such that Bi∩Bj = ∅ for i 6= j and X =

⋃∞
k=0Bk, 0 < µ (Bk) <∞

for all k ∈ N0. Define

Sm,m+1f = 1
m+1

(∫
X
fdµ

)
gm+1 +

(
1− 1

m+1

) ∞∑
j=m+1

aj−m−1 (f) · gj+1

for any f ∈ L1(µ) and any gj ∈ D such that supp gj ⊆ Bj and where aj(f) =∫
Bj
fdµ. Applying Theorem 3 we obtain that S ∈ Sa.uas as for every f , h ∈ D

we have ‖Sm,m+1f ∧ Sm,m+1h‖1 ≥ 1
m+1 and

∑∞
m=0

1
m+1 = ∞. Fix ε > 0 and

choose M such that 2
M+1 < ε. Consider T ∈ S defined for f ∈ L1(µ) as follows:

Tm,m+1f =

{
Sm,m+1f, if m < M,∑∞

j=m+1 aj−m−1 (f) · gj+1, if m ≥M.

Notice that for m ≥ M we have supf,h∈D ‖Tm,nf − Tm,nh‖1 = 2 (e.g. take f ,
h ∈ D such that supp f ⊆ BM+1 and supp h ⊆ BM+2). Hence T /∈ Sa.uas. We
easily find that dn.sup(S,T) ≤ 2

m+1 < ε. It follows that Sa.uas is not norm open.

3. Strong operator topology asymptotic stability

This section is dedicated to the study of the asymptotic stability of nonhomo-
geneous chains of Markov operators in strong operator topology on S . Similar
to the previous section, we introduce two types of limit behaviour with the only
difference that the mode of convergence is strong. We begin with

Definition. A nonhomogeneous chain of Markov operators P is called strong
asymptotically stable if there exists (a unique) f∗ ∈ D such that for every m ∈ N0
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and every f ∈ D
lim
n→∞

‖Pm,nf − f∗‖1 = 0.

The set of all strong asymptotically stable Markov operators is denoted by Ssas.

Obviously Suas ⊆ Ssas.

Theorem 6. The set S c
sas of all Markov operators which are not strong asymp-

totically stable is
∑

sup topology dense subset of S (i.e., in dso. sup). Moreover,
S c
sas contains

∑∑
dense Gδ set (i.e., in dso.

∑).

Proof. Similar arguments to those which were used towards the proof of The-
orem 1 imply the first part of the above theorem. Therefore we only prove the
second statement.

Let {f0, f1, . . .} be a fixed countable and linearly dense subset of D. As
before, we find a sequence {Bk} such that Bk ∈ A, Bi ∩ Bj = ∅ for i 6= j and
X =

⋃∞
k=0Bk, 0 < µ(Bk) < ∞ for all k ∈ N0. To see that S c

sas contains the∑∑
dense Gδ set observe that

S c
sas⊇

{
P∈S :∀t∈N0∀m∈N0∀j∈N0∀ı∈N∀N∈N0∃n>max{N,m}

t∑
k=0

∫
Bk

Pm,nfjdµ <
1

ı

}

=
∞⋂
t=0

∞⋂
m=0

∞⋂
j=0

∞⋂
ı=1

∞⋂
N=0

⋃
n>max{N,m}

{
P ∈ S :

t∑
k=0

∫
Bk

Pm,nfjdµ <
1

ı

}
.

Clearly, the mapping

S 3 P 7→
t∑

k=0

∫
Bk

Pm,nfjdµ

is dso.
∑ continuous, hence the sets {P ∈ S :

∑t
k=0

∫
Bk
Pm,nfjdµ <

1
l } are open

in the topology induced by dso.
∑. It remains to show that the set{

P∈S : ∀t∈N0∀m∈N0∀j∈N0∀ı∈N∀N∈N0∃n>max{N,m}

t∑
k=0

∫
Bk

Pm,nfjdµ <
1

ı

}
(∗)

is
∑∑

dense. Now then, let P ∈ S and 0 < ε < 1 be taken arbitrarily. There
exists m0 ∈ N0 such that

∞∑
l=0

∞∑
m=m0+1

1

2m+l+1
=
∞∑
l=0

1

2l+1

∞∑
m=m0+1

1

2m
=

1

2m0
<
ε

2
.
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Let gk ∈ D be such that supp gk = {x ∈ X : gk(x) 6= 0} ⊆ Bk for any k ∈ N0.
Consider Pε ∈ S defined as follows:

Pm,m+1
ε f =

{
(1− ε)Pm,m+1f + ε

(∫
X fdµ

)
gm0+1, if 0 ≤ m ≤ m0,(∫

X fdµ
)
gm+1, if m > m0

for any f ∈ L1(µ). We notice that∫
t⋃

k=0
Bk

Pm,nε fdµ = 0

if n > max{m0 + 1, t}, so clearly Pε = (Pm,m+1
ε )m≥0 is an element of the consid-

ered subset (∗). Moreover, we have

dso.
∑(Pε,P)

=

∞∑
m,l=0

1

2m+l+1

∥∥Pm,m+1
ε fl − Pm,m+1fl

∥∥
1

=

∞∑
l=0

m0∑
m=0

1

2m+l+1

∥∥Pm,m+1
ε fl − Pm,m+1fl

∥∥
1

+

∞∑
l=0

∞∑
m=m0+1

1

2m+l+1

∥∥Pm,m+1
ε fl − Pm,m+1fl

∥∥
1

=
∞∑
l=0

m0∑
m=0

1

2m+l+1

∥∥∥∥(1− ε)Pm,m+1fl + ε

(∫
X
fldµ

)
gm0+1 − Pm,m+1fl

∥∥∥∥
1

+
∞∑
l=0

∞∑
m=m0+1

1

2m+l+1

∥∥∥∥(∫
X
fldµ

)
gm+1 − Pm,m+1fl

∥∥∥∥
1

= ε

∞∑
l=0

m0∑
m=0

1

2m+l+1

∥∥gm0+1 − Pm,m+1fl
∥∥
1

+

∞∑
l=0

∞∑
m=m0+1

1

2m+l+1

∥∥gm+1 − Pm,m+1fl
∥∥
1

≤ ε
∞∑
l=0

m0∑
m=0

1

2m+l+1
· 2 +

∞∑
l=0

∞∑
m=m0+1

1

2m+l+1
· 2

< ε

∞∑
l=0

m0∑
m=0

1

2m+l
+
ε

2
· 2 = ε

(
1− 1

2m0

) ∞∑
l=0

1

2l
+ ε < 2ε+ ε = 3ε,

which completes the proof.



32 M. Pu lka

On the other hand, the fact that Suas ⊆ Ssas and the Proposition 2 lead to the
following

Proposition 7. The set Ssas is
∑∑

topology dense in S (i.e., in dso.
∑).

Let us proceed with

Definition. A nonhomogeneous chain of Markov operators P is called strong
almost asymptotically stable if for every m ∈ N0 and f , g ∈ D

lim
n→∞

‖Pm,nf − Pm,ng‖1 = 0.

The set of all strong almost asymptotically stable Markov operators is denoted
by Sa.sas.

Clearly, Sa.uas ⊂ Sa.sas. It should be emphasized that unlike the uniform case, in
the class of homogeneous chains of Markov operators notions of strong asymptotic
stability and strong almost asymptotic stability are essentially different (cf. [4]).

We easily obtain that strong almost asymptotically stable nonhomogeneous
chains of Markov operators are generic.

Theorem 8. The set Sa.sas is a dense Gδ subset of S in both
∑

sup and
∑∑

strong operator topologies (i.e., in dso. sup and dso.
∑ respectively).

Proof. It remains to show the Gδ-ness of Sa.sas. Let {f0, f1, . . .} be a fixed
countable and linearly dense subset of D. Notice that

Ss.aas =
{

P ∈ S : ∀m∈N0 ∀i∈N0 ∀j∈N0 lim
n→∞

‖Pm,nfi − Pm,nfj‖1 = 0
}

=
∞⋂
m=0

∞⋂
i=0

∞⋂
j=0

∞⋂
ı=1

∞⋂
N=0

⋃
n>max{N,m}

{
P ∈ S : ‖Pm,nfi − Pm,nfj‖1 <

1

ı

}
.

Observe that the sequence n 7→ ‖Pm,nfi − Pm,nfj‖1 is nonincreasing and that
for fixed m < n the function S 3 P 7→ ‖Pm,nfi−Pm,nfj‖1 is continuous for the
metric dso.

∑. Hence Sa.sas is a Gδ set for the metric dso.
∑ (and it is Gδ set for

the stronger metric dso. sup as well).
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