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Abstract

Mixed models will be considered using the Commutative Jordan
Algebra of Symmetric matrices approach. Prime basis factorial models
will now be considered in the framework provided by Commutative
Jordan Algebra of Symmetric matrices. This will enable to obtain
fractional replicates when the number of levels is neither a prime or a
power of a prime. We present an application to the effect of lidocaine,
at an enzymatic level, on the heart muscle of beagle dogs
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1. Introduction

We start by using Commutative Jordan Algebras of Symmetric matrices
(CJAS) to study the algebraic structure of orthogonal models. The CJAS
were introduced by Jordan et al. (1934), see [4], in order to provide an
algebraic formulation for quantum mechanics, only later on they were redis-
covered by Seely (1970a) [7], (1970b) [8], (1971) [9], Seely & Zyskind (1971)
[10] and used in statistics. These algebras are vector spaces constituted
by symmetric matrices that commute and containing the squares of their
matrices.
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An orthogonal model

y =

w∑

i=1

Xiβi

is associated to an CJAS A , if the family T = {M1, . . . ,Mw}, with Mi =
XiX

⊤
i , i = 1, . . . , w, is a basis for A with V = {Q1, . . . ,Qw} the principal

basis of A we will have

Mi =
w∑

j=1

bi,jQj ,

the transition matrix B = [bi,j] being regular. In our study we will derive
conditions on the algebraic structure of orthogonal models, normally on
their transition matrices, to enable the proper treatment of mixed models.
Moreover we can always write Qj = A⊤

j Aj with Aj such that AjA
⊤
j = Igj ,

j = 1, . . . , w, it being highly convenient that the model is separated that is
that

AjXiβi = 0gj j 6= i.

In the last part of our study we will consider prime basis factorials models
in the framework provided by CJAS. This will enable to obtain fractional
replicates when the number of levels is neither a prime or a power of a prime.
Lastly we consider an application on the lidocaine at an enzymatic level, on
the heart muscle of beagle dogs.

2. Algebraic Structure

Let

(1) P =
[
A⊤

1 , . . . ,A
⊤
w

]⊤

be an orthogonal matrix associated to a commutative Jordan algebra A ,
constituted by m×m matrices.

With Ks a matrix, obtained by removing the first line, 1√
s
1⊤
s , of a s× s

orthogonal matrix,

(2) P =

[
A⊤

1 ⊗ 1√
s
1s, . . . ,A

⊤
w ⊗ 1√

s
1s,A

⊥⊤
]⊤
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where ⊗ represents the usual kronecker matrices product and A⊥ = Im⊗Ks

will be an orthogonal matrix associated to A ⋆ A (s), where ⋆ represents
the restricted kronecker product, see e.g. Fonseca et al. (2006). We also
have

(3) Js = Is −
1

s
Js = K⊤

s Ks.

A model with m = n× s observations, is strictly associated to A , if it can
be written as

(4) y =
w∑

i=1

(
A⊤

j ⊗ 1√
s
1s

)
η̃j + ε,

where η̃j ∼ N
(
ηj, γjIgj

)
, j = 1, . . . , w, and ε ∼ N

(
0,Q⊥), with Q⊥ =

A⊥⊤

A⊥, and these vectors are independent. This model will have m fixed
effects terms, if

(5)





ηj = 0 , j = m+ 1, . . . , w,

γj = σ2, j = 1, . . . ,m.

The models we are dealing with will have fixed effects, random effects or
mixed effects, according to





m = w fixed effects γj = σ2, j = 1, . . . , w,

1 < m < w mixed effects γj = σ2, j = 1, . . . ,m,

ηj = 0, j = m+ 1, . . . , w,

1 = m random effects ηj = 0, j = 2, . . . , w.

3. Inference

Let’s put gj = rank(Qj) = rank(Aj), j = 1, . . . , w, and g = rank(Q⊥) =
ṅ(s− 1), with ṅ the number of treatments. Thus we will have
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(6)





V−1 =
w∑

j=1

γ−1
j

(
Qj ⊗

1

s
Js

)
+

1

σ2
Q⊥,

det(V) =

w∏

j=1

γ
gj
j (σ2)g

as well as

(7)

(y − µ)⊤V−1 (y− µ) =

w∑

j=1

1

γj
‖η̃j − ηj‖2 +

S

σ2

=

m∑

j=1

1

γj
‖η̃j − ηj‖2 +

w∑

j=m+1

Sj

γj
+

S

σ2

with Sj = ‖η̃j‖2, j = 1, . . . , w and S = ‖ε⊥‖2 = ‖Q⊥y‖2. Then we can
write the probability density function as

(8) n(y) =
e

−
1

2




m∑

j=1

1

σ2
‖η̃j − ηj‖2 +

w∑

j=m+1

Sj

γj
+

S

σ2




(2π)
n
2

w∏

j=1

γ
gj

2

j (σ2)g

so the η̃j, j = 1, . . . ,m, the Sj, j = m+ 1, . . . , w, and S constitute a suffi-
cient and complete statistic, since the normal density belongs to the expo-
nential family and the parametric contains the product of non degenerated
intervals, see Lehman (1986, pag. 132) [5]. Moreover η̃j ∼ N

(
ηj, γjIgj

)
,

j = 1, . . . , w, Sj ∼ γjχ
2
gj , j = m + 1, . . . , w, and S ∼ σ2χ2

g, so we have
UMVUE for the estimable vectors and variance components.

4. Prime Basis Factorials

With p a prime number, pN will be a model in which N factors with p

levels cross. We now derive commutative Jordan algebras associated to
such models.
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The factor numbers may be numbered from 0 to p − 1. Thus the pN treat-
ments may be represented by vectors x with components xj = 0, . . . , p − 1,
j = 1, . . . , N . Let xj be the vector with index

(9) k(xj) = 1 +

N∑

j=1

pj−1xj

equal to j.

In the analysis of these models the functions

(10) f(x|a) =




N∑

j=1

ajxj




(p)

,

where aj = 0, . . . , p − 1, j = 1, . . . , N , play a central part, see for instance
Jesus et al. (2009) [2]. The values of these functions are obtained using the
module p arithmetic. To avoid redundancies only the functions where the
first non null coefficient are considered. Let L be the set of such functions.

With W(f) the p× pN matrix with elements

(11) wi,j(f) =





wi,j(f) = 0, f(xj) 6= i− 1,

wi,j(f) = 1, f(xj) = i− 1,

the matrix

(12) P =




1√
pN

1⊤
pN

A(f); f ∈ L


 ,

where A(f) = KpW(f), is orthogonal, see e.g., Jesus et al. (2009a) [2],
Jesus et al. (2009b) [3]. This will be an orthogonal matrix associated to

the CJAS A (pN ) with principal basis
{

1
pN

J,Q(f), f ∈ L

}
, where Q(f) =

(A(f))⊤A(f). The model

(13) y =
1

pN/2
1pN ⊗ 1rµ+

∑

f∈L

(
(A(f))⊤β(f)

)
⊗ 1r + ε
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will be associated to the CJAS A (pN ) ⋆A (r). It is interesting to point out
that, in this case, basis T and V of A (pN ) are identical. Thus the model
is triangular and, in the mixed case, segregated.

4.1. Random effects models

The random vectors in the canonical form are now the





β(ℓ) ∼ N (0, γ(ℓ)lp−1) ,

ε ∼ N
(
0, σ2In

)

with βℓ independent from ε, as well as





Sℓ = ‖A(ℓ)y‖2 ∼
(
γ(ℓ) + σ2

)
χ2
p−1,

S =
∥∥A⊥y

∥∥2 ∼ σ2χ2
g,

where Sℓ is independent from S, which give us the UMVUE,

(14)





σ̃2 =
S

g
,

γ̃(l) =
Sl

p− 1
− S

g
,

since

(15)





E(
Sℓ

p− 1

)
= γ(ℓ) + σ2,E(

Sℓ

p− 1
− S

g

)
= γ(ℓ).

Besides this

F (ℓ) =
g

p− 1

Sℓ

S
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will be the product by θ(ℓ) =
σ2 + γ(ℓ)

σ2
, of a central F variable with p − 1

and g degrees of freedom. Thus F (ℓ) will be used to test





H0(ℓ) : γ(ℓ) = 0
or
H0(ℓ) : θ(ℓ) = 1

against 



H1(ℓ) : γ(ℓ) > 0
or
H1(ℓ) : θ(ℓ) > 1.

Since

F (ℓ) ∼ F

(
z

θ(ℓ)
|p− 1, g

)

this test is strictly unbiased.

4.2. Fixed and random models

In this case L ◦ = Lf ∪ Lr, with β(ℓ) fixed when ℓ ∈ Lf and β(ℓ) ∼
N

(
0, σ2(ℓ)Ip−1

)
when ℓ ∈ La. For ℓ ∈ Lf or ℓ ∈ Lr we can use the

previous results.

4.3. Replicates

We now have r ”copies” of the base model, that is strictly associated to a
CJAS. We assume the ”copies” to correspond to the levels of a fixed effects
factor that does not interact with the factors in the base model. In the first
step in the analysis we take the n◦ treatments in the base models as levels
of a factor. We then would have two factors, which do not interact, with n◦

and r level factor. In the second step if the model is strictly associated to a
CJAS with principal basis {Q1, . . . ,Qw},having

(16)





Q1 =
1

n◦Jn◦ ,

w∑

j=2

Qj = Jn◦.
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The model with replicates will be strictly associated to A ◦, if

(17) Qj = A⊤
j Aj, j = 1, . . . , w,

we will have

(18)





1

n◦Jn◦ ⊗ 1

r
Jr =

(
1√
n◦1n

◦ ⊗ 1√
r
1r

)(
1√
n◦1

⊤
n◦ ⊗ 1√

r
1⊤r

)
,

1

n◦Jn◦ ⊗ Jr =

(
1√
n◦1n

◦ ⊗K⊤
r

)(
1√
n◦1

⊤
n◦ ⊗Kr

)
,

Qj ⊗
1

r
Jr =

(
A⊤

j ⊗ 1√
r
1r

)(
Aj ⊗

1√
r
1⊤r

)
, j = 2, . . . , w,

Jn◦ ⊗ Jr =
(
T⊤

n◦ ⊗T⊤
r

)
(Kn◦ ⊗Kr)

and we can now apply a similar treatment to the one presented before. The
first of these matrices will be associated to the general mean value, the
second one to the replicates, the next one to the effects and interactions of
the factors in the base model and the last one to the error.

5. An application

The application that we are about to consider, is a 33 design, for the study
of the effect of lidocaine, at an enzymatic level, on the heart muscle of beagle
dogs, see Montgomery (2005) [6]. Three different brands of lidocaine were
used as well as three different doses and three dogs. The first two factors had
fixed effects and the last one random effects. Two replicates were carried
out. We present the data in Table 1.

On the next table we can see the F tests and their p − values. The
leading factor is clearly dose. Moreover there is some interaction between
brand and dose. To complete the analysis of the factor dose we obtained
it’s linear and quadratic effects and tested them. The F tests were 714,06
and 2,36 with p-value ≈ 0 and 0, 13656. So only the linear effect was
significant.
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Table 1. Enzyme levels.

Replica 1 Replica 2
Dog Dog

Brand Dosage 1 2 3 1 2 3

1 1 86 84 85 84 85 86
2 94 99 98 95 97 90
3 101 106 98 105 104 103

2 1 85 84 86 80 82 84
2 95 98 97 93 99 95
3 108 114 109 110 102 100

3 1 84 83 81 83 80 79
2 95 97 93 92 96 93
3 105 100 106 102 111 108

Table 2. F Tests and p− values.

Reduced Application Sum of Squares F tests p− value

x1 31,00 2,59 0,0936
x2 4260,80 357,03 ≃ 0

x1 + x2 51,42 4,31 0,0242
x1 + 2x2 18,14 1,52 0,2375

x3 28,00 2,35 0,1157
x1 + x3 0,83 0,07 0,9327
x1 + 2x3 2,50 0,21 0,8124
x2 + x3 25,50 2,14 0,1383
x2 + 2x3 11,39 0,95 0,3982

x1 + x2 + x3 25,25 2,21 0,1408
x1 + x2 + 2x3 4,42 0,37 0,6943
x1 + 2x2 + x3 4,03 0,34 0,7166
x1 + 2x2 + 2x3 27,08 2,27 0,1235
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6. Final remarks

The results obtained in this application are in line with the ones obtained
using the classical approach, but the methodology presented here allows the
study of a larger number of interactions simultaneously. Also, using COBS
allows us to consider a third factor (the dogs), making this a more realistic
model, being this way more advantageous the use of the technique presented
here.
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