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1. Introduction

Let X1,X2, . . . be independent random variables with EXi = 0 and 0 <
EX2

i ≡ σ2

i < ∞, i = 1, 2, . . . For n ∈ N denote Sn = X1 + · · · + Xn,
B2

n = σ2
1
+ · · ·+ σ2

n. Let Φ(x) be the standard normal distribution function,

Φ(x) =
1√
2π

x∫

−∞

e−z2/2dz, x ∈ R.

Denote

∆n = sup
y

|P(Sn < yBn)− Φ(y)|.

Let G be the class of real-valued functions g(x) of x ∈ R such that

• g(x) is even;

• g(x) is non-negative for all x and g(x) > 0 for x > 0;

• g(x) does not decrease for x > 0;

• the function x/g(x) does not decrease for x > 0.

In 1963 M. Katz [4] proved that, whatever g ∈ G is, if the random variables
X1,X2, . . . are identically distributed with EX2

1
g(X1) < ∞, then there exists

a finite positive absolute constant C such that

(1) ∆n 6 C · EX2
1
g(X1)

σ2

1
g
(
σ1

√
n
) .

In 1965 this result was generalized by V.V. Petrov [11] to the case of not
necessarily identically distributed random variables (also see [12]): whatever
g ∈ G is, if EX2

i g(Xi) < ∞, i = 1, . . . , n, then there exists a finite positive
absolute constant C such that

(2) ∆n 6
C

B2
ng(Bn)

n∑

i=1

EX2

i g(Xi).

The present paper aims at giving an upper bound of the absolute constant
C in (2). It will be shown that this bound does not depend on the particular
form of g ∈ G (and, hence, is universal) and does not exceed 3.1905 in the
general case. We also give sharper bounds for some special cases.
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In particular, the function

g(x) = min{|x|, Bn}, x ∈ R,

is obviously in G. In this case inequality (2) turns into

(2′) ∆n 6 C

(
1

B2
n

n∑

i=1

EX2

i I(|Xi| > Bn) +
1

B3
n

n∑

i=1

E|Xi|3I(|Xi| < Bn)

)
.

This inequality was proved in 1966 by L.V. Osipov [7] (also see [12], Ch. V,
Section 3, Theorem 8). In [8, 9] L. Paditz showed that in (2′) C < 4.77.
In 1986 he also noted [10] that with the account of Lemma 12.2 in [1] the
techniques used in [8, 9] makes it possible to lower this estimate down to
C < 3.51. Apparently, being unaware of the result of Paditz, in 2001 Chen
and Shao published the paper [2] in which by the Tikhomirov-Stein method
inequality (2′) was re-proved with C = 4.1.

From the results of the present paper it follows that the estimates of
the constant C in (2′) can be sharpened to at least C 6 3.1905.

2. Auxiliary statements

Lemma 1. Let X be a random variable with E|X|3 < ∞ and EX = a. Let

K =
17 + 7

√
7

27
≈ 1.315565 . . .

Then

E|X − a|3 6 min
{
KE|X|3, E|X|3 + 3|a|EX2 + a2E|X|

}
.

Proof. On the one hand, it is obvious that

E|X − a|3 = E|X − a|(X − a)2 = E|X − a|(X2 − 2aX + a2) 6

= E|X|3 − 2aE(X|X|) + a2E|X|+ |a|EX2 − 2|a|aEX + |a|3 6

= E|X|3 + 3|a|EX2 + a2E|X|.
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On the other hand, using the result of [3] stating that the extremum of
a functional linear in the distribution function of the random variable X
under the single linear moment-type condition EX = a is attained at some
two-point distribution, in [6] (see Lemma 5 there) it was proved that

sup
X : E|X|3<∞

E|X − EX|3
E|X|3 =

17 + 7
√
7

27
< 1.3156,

that completes the proof.

Lemma 2. 1◦. Let q > 0. Then

sup
x

|Φ(qx)−Φ(x)| 6 1√
2πe

(
max

{
q,

1

q

}
− 1

)
.

2◦. Let a ∈ R. Then

sup
x

|Φ(x+ a)− Φ(x)| 6 |a|√
2π

.

The simple proof of this lemma is based on the Lagrange formula (also see
[12], Chapter 5).

Lemma 3. Let X be a random variable with EX = 0 and EX2 = 1. Then

sup
x

|P(X < x)− Φ(x)| 6 0.541.

For the proof see, e.g., Lemma 12.2 in [1].

3. Main result

Theorem.

1◦. Let g ∈ G, n > 1 be an integer, random variables X1, . . . ,Xn be in-

dependent with EXi = 0 and EX2

i g(Xi) < ∞, i = 1, . . . , n. Then

inequality (2) holds with C 6 3.1905.

2◦. Let, in addition to the conditions specified in 1◦, the random variables

X1, . . . ,Xn be identically distributed. Then inequality (1) holds with

C 6 3.0466.
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3◦. Let, in addition to the conditions specified in 1◦, the random variables

X1, . . . ,Xn have symmetric distributions. Then inequality (2) holds

with C 6 2.0409.

4◦. Let, in addition to the conditions specified in 2◦, the random variables

X1, . . . ,Xn have symmetric distribution. Then inequality (1) holds with
C 6 1.9363.

Proof. Following the mainstream of the proof of (2) in [12], we will
slightly adjust it to our purposes.

1◦. Consider the truncated random variables

X̃j = XjI(|Xj | < Bn), j = 1, 2, . . . ,

where I(A) is the indicator function of an event A: if ω is an elementary
outcome, then

I(A) = I(ω, A) =

{
1, ω ∈ A,

0, ω /∈ A.

For integer j > 1 and n > 1 denote

ãj = EX̃j , Ãn = ã1 + · · ·+ ãn, σ̃2

j = DX̃j ,

B̃2
n = σ̃2

1
+ · · ·+ σ̃2

n, Fj(x) = P(Xj < x).

Since EXj = 0, then

(3)

∣∣∣∣
∫

|x|<Bn

xdFj(x)

∣∣∣∣ =
∣∣∣∣

∫

|x|>Bn

xdFj(x)

∣∣∣∣.

Let α ∈ (0, 1). Assume that B̃2
n 6 αB2

n. Then with the account of (3) we
have

(1− α)B2

n 6 B2

n − B̃2

n =

n∑

j=1

∫

|x|<Bn

x2dFj(x) +

n∑

j=1

∫

|x|>Bn

x2dFj(x)



34 V. Korolev and S. Popov

(4)

−
n∑

j=1

∫

|x|<Bn

x2dFj(x) +

n∑

j=1

( ∫

|x|<Bn

xdFj(x)

)2

=

n∑

j=1

∫

|x|>Bn

x2dFj(x) +

n∑

j=1

( ∫

|x|>Bn

xdFj(x)

)2

6 2

n∑

j=1

∫

|x|>Bn

x2dFj(x)

= 2
n∑

j=1

∫

|x|>Bn

x2g(x)

g(x)
dFj(x) 6

2

g(Bn)

n∑

j=1

EX2

j g(Xj).

This means that, if B̃2
n 6 αB2

n, then

(5)
1

B2
ng(Bn)

n∑

j=1

EX2

j g(Xj) >
1− α

2
.

From now on we will assume that

(6) B̃2

n > αB2

n.

Denote Yn = X̃1 + · · ·+ X̃n. The event {Sn < xBn} implies the event

{Yn < xBn}
⋃

{|X1| > Bn}
⋃

· · ·
⋃

{|Xn| > Bn},

whereas the event {Yn < xBn} implies the event

{Sn < xBn}
⋃

{|X1| > Bn}
⋃

· · ·
⋃

{|Xn| > Bn}.

Therefore

∆n 6 Q1 +Q2 +Q3,
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where

Q1 = sup
x

∣∣∣∣P
(
Yn − Ãn

B̃n

<
xBn − Ãn

B̃n

)
− Φ

(
xBn − Ãn

B̃n

)∣∣∣∣,

Q2 = sup
x

∣∣∣∣Φ
(
xBn − Ãn

B̃n

)
− Φ(x)

∣∣∣∣, Q3 =

n∑

j=1

P(|Xj | > Bn).

By virtue of the Berry-Esseen inequality with the best known upper bound
of the absolute constant [13] with the account of Lemma 1 and condition
(6) we have

(7)

Q1 6
0.56

B̃3
n

n∑

j=1

E|X̃j − ãj|3 6
0.56 · 1.3156

α3/2B3
n

n∑

j=1

E|X̃j |3

6
0.736736

α3/2B3
n

n∑

j=1

∫

|x|<Bn

|x|
g(x)

x2g(x)dFj(x)

6
0.736736

α3/2B2
ng(Bn)

n∑

j=1

EX2

j g(Xj).

We obviously have

Q2 6 Q21 +Q22,

where

Q21 = sup
x

∣∣Φ
(
xBn/B̃n

)
−Φ(x)

∣∣,

Q22 = sup
x

∣∣Φ
(
x− Ãn/B̃n

)
− Φ(x)

∣∣.

Furthermore, by virtue of Lemma 2 (1◦) and condition (6) we obtain

Q21 6
1√
2πe

(
Bn

B̃n

− 1

)
=

B2
n − B̃2

n√
2πeB̃n(Bn + B̃n)

6
B2

n − B̃2
n√

2πeα(1 +
√
α)B2

n

.
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Estimating the difference B2
n − B̃2

n in the numerator in the same way as we
did to establish relation (4), we appear at the inequality

(8) Q21 6
2√

2πeα(1 +
√
α)B2

ng(Bn)

n∑

j=1

EX2

j g(Xj).

By virtue of Lemma 2 (2◦) and conditions (6) and (3) we obtain

(9)

Q22 6
|Ãn|√
2πB̃n

6
1√

2παBn

n∑

j=1

∣∣∣∣
∫

|x|<Bn

xdFj(x)

∣∣∣∣ =
1√

2παBn

n∑

j=1

∣∣∣∣
∫

|x|>Bn

xdFj(x)

∣∣∣∣

6
1√

2παBn

n∑

j=1

∫

|x|>Bn

x2g(x)

|x|g(x)dFj(x) 6
1√

2παB2
ng(Bn)

n∑

j=1

EX2

j g(Xj).

Unifying (8) and (9) we obtain

(10) Q2 6
1√
2πα

(
1 +

2√
e(1 +

√
α)

)
· 1

B2
ng(Bn)

n∑

j=1

EX2

j g(Xj).

Finally, by the Markov inequality we have

(11) Q3 6
1

B2
ng(Bn)

n∑

j=1

EX2

j g(Xj).

From (7), (10) and (11) it follows that, under condition (6),

(12) ∆n 6
C1(α)

B2
ng(Bn)

n∑

j=1

EX2

j g(Xj)

with

(13) C1(α) =
0.736736

α3/2
+

1√
2πα

(
1 +

2√
e(1 +

√
α)

)
+ 1.
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To choose the optimal value of α and, hence, C1(α) note that C1(α) is a
decreasing function of α ∈ (0, 1). On the other hand, for the inequality (12)
to be reasonable irrespective of condition (6), that is, for all possible distri-
butions of Xj , the parameter α should be chosen so that for distributions

with B̃2
n 6 αB2

n estimate (12) becomes trivial. Thus, with the account of
Lemma 3 and relation (5) we arrive at the conclusion that the optimal α
and C1(α) must be tied up by the equation

(14) C1(α) =
2 · 0.541
1− α

.

The left-hand side of this equation is decreasing in α whereas its right-
hand side increases. Therefore, equation (14) has the unique solution α1 ≈
0.66086 providing C1(α1) ≈ 3.19045 . . . Item 1◦ is thus proved.

2◦. The proof of this statement is a word-for-word copy of the proof of 1◦

with the only change: the coefficient 0.56 in (7) should be replaced by the
coefficient 0.4784 which is the best known upper bound of the constant in
the Berry-Esseen inequality for sums of independent identically distributed
random variables [5]. So, instead of (14), the equation

(15) C2(α) =
2 · 0.541
1− α

.

should be solved with

(16) C2(α) =
0.62938304

α3/2
+

1√
2πα

(
1 +

2√
e(1 +

√
α)

)
+ 1

yielding the solution α2 ≈ 0.64484 and C2(α2) ≈ 3.046506 . . .

3◦. In this case the expectations of the summands equal zero. Therefore,
the coefficient 2 in (4) and, hence, in (8) as well as the coefficient 1.3156
in (7) turn into 1 whereas Q22 vanishes. Therefore, the optimal value of α
should be sought as the solution to the equation

(17) C3(α) =
0.541

1− α
,

where

(18) C3(α) =
0.56

α3/2
+

1√
2πeα(1 +

√
α)

+ 1.
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The unique solution of (17) is α3 ≈ 0.73491 yielding C3(α3) ≈ 2.04083 . . .

4◦. In this case the proof repeats the proof of 3◦ with C3(α) replaced by

(19) C4(α) =
0.4784

α3/2
+

1√
2πeα(1 +

√
α)

+ 1.

The unique solution of the equation

(20) C4(α) =
0.541

1− α

is α4 ≈ 0.720595 providing C4(α4) ≈ 1.93625 . . . The theorem is proved.
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