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Abstract

For any insurance contract to be mutually advantageous to the in-
surer and the insured, premium setting is an important task for an
actuary. The maximum premium (Pmax) that an insured is willing
to pay can be determined using utility theory. The main focus of this
paper is to determine Pmax by considering different forms of the utility
function. The loss random variable is assumed to follow different Sta-
tistical distributions viz Gamma, Beta, Exponential, Pareto, Weibull,
Lognormal and Burr. The theoretical expressions have been derived
and the results have also been depicted graphically for some values of
distribution parameters.
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1. Introduction

The most important thing for insurance companies is the setting of pre-
miums for different types of policies or different levels of risk. Premium
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is affected by many factors like age, sex, moral hazard and utility func-
tion. In Actuarial Science, many different premium principles have been
proposed (ref. Goovaerts, De Vijlder and Haezendonck, 1984). Wang (1995,
1996) and Wang and Young (1997) and other authors proposed pricing in-
surance risks using a distortion function. There exits an economic theory
that describes the reasons why insured are willing to pay a premium more
than the mathematical expectation of their loss, that is, the net premium
(Kaas, Goovaerts, Dhaene and Denuit, 2004). These approaches to pric-
ing insurance contracts treat insurance losses as positive random variables
and produce premium that are higher than the expected value of the in-
surance loss. The existence of the insurance industry depends upon in-
vestor’s willingness to pay for being insured. It must, however, be admit-
ted that the modern use of the utility concept in insurance literature is
due to the results given by Neumann and Morgenstern (1944). The ex-
pected utility theory became popular after these authors developed their
axiomatic approach in 1947. Borch (1974, 1990) explained the relevance
of the expected utility theory in order to solve problems in insurance. As
Trowbridge (1989) pointed out, utility theory can be seen as the philosoph-
ical basis of actuarial science. For more details regarding expected utility,
the interested readers can refer to Huang and Litzenberger (1988), Schmidt
(1998), Panjer (1998), Kaas, Goovaerts, Dhaene and Denuit (2005) and the
references therein.

The utility function u(w) is defined on a set of prospects and represents
preferences over these prospects. The utility function satisfies the principle
of non-satiation,that is, u′(w) > 0. This means that u(w) is an increasing
function of wealth w and people prefer more wealth to less. In insurance and
finance sector, the investor preferences are assumed to be influenced by their
attitude towards risk, which can be expressed in terms of properties of util-
ity functions. Investors can be risk-averse, risk-neutral or risk-seeking (ref.
Dickson, 2005). A risk-averse (risk-seeking) investor values an incremental
increase (decrease) in wealth less highly than an incremental decrease (in-
crease). For a risk averse (risk seeking) investor, the utility function u(w)
is strictly concave (convex), that is, u′′(w) < (>)0, A risk- neutral investor
is indifferent towards risk and for him,u′(w) > 0 and u′′(w) = 0. The form
of the utility function can be chosen to model an individual’s preferences
according to whether or not, he likes, dislikes or is indifferent to risk. The
higher the curvature of u(w), the higher will be the risk aversion. However,
since expected utility functions are not uniquely defined, a measure that
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stays constant is the Arrow-Pratt measure of absolute risk-aversion (ARA)

(ref. Arrow, 1971) and (Pratt, 1964). This is defined as A(w) = −
u′′(w)
u′(w) . De-

creasing/increasing absolute risk aversion (DARA/IARA) is present if A(w)
is decreasing/increasing. IARA (DARA) implies that the utility function is
positively skewed, that is, u′′(w) < (>)0 (Ref. Haim, 2006).

Different types of utility functions prevailing in literature (Kaas et al.,
2004) and (Dickson, 2005) are

Linear utility function: u(w) = w;

Exponential utility function: u(w) = −ae−aw, a > 0;

Quadratic utility function: u(w) = −(a− w)2, w ≤ a;

Fractional Power utility function: u(w) = wc, 0 < c < 1.

Among the above-mentioned utility functions, the linear utility function
corresponds to a risk-neutral investor. The risk-averse investor prefers to
use exponential or quadratic or fractional power utility function. It is nor-
mally assumed that most of the investors are risk averse. Consequently, they
accept additional risk (or are ready to pay higher premium than the
expected amount of loss) only if they expect a higher level of return. Only
a few of the investors are risk-neutral and risk-seeking investors are not
very common. Moreover, exponential utility function is unique in exhibiting
constant absolute risk aversion (CARA). An example of a DARA
utility function is the logarithmic function and quadratic utility function is
an IARA utility function. In the light of the above discussion, we
focus on study of linear, exponential, quadratic and fractional power
utility function.

If u(w) is the utility function of a decision maker with wealth w, then he
makes a choice between random losses X and Y by comparing the expected
utilities E(u(w − X)) and E(u(w − Y )) and choosing the loss with higher
expected utility. The utility theory helps the insured (with initial wealth
w) determine the maximum premium Pmax that he is prepared to pay for
a random loss X. According to the expected value principle, Pmax satisfies
the utility equilibrium equation (Kaas et al., 2001) and (Dickson, 2005)
given as

(1) E[u(w −X)] = u(w − Pmax).
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The minimum premium (Pmin) acceptable by the insurer, can be evaluated
using the utility equilibrium equation given by E[u(w +Pmin −X)] = u(w)
(Kaas et al., 2005) where u(w) is the utility function of the insurer with
initial wealth w.

If Pmax is greater than Pmin, the utilities of both the parties increase if
the premium paid lies between Pmin and Pmax (Kaas et al., 2004). Further
an insurance contract with expected loss E(X) is feasible if Pmax ≥ Pmin ≥

E(X) (Bowers, Gerber, Hickman, Jones and Nesbitt, 1997).

In this paper, our basic interest is to evaluate the maximum premium
that the insured is willing to pay to the insurer, using the Expected utility
model. The behaviour of the premium amount is explored for different com-
binations of loss distributions and utility functions. Theoretical expressions
are derived for the maximum premium. Conclusions are drawn about the
impact of Pmax on insured or insurer based on the values of the parameters
of the loss distribution.

In Section 2, the expressions for Pmax are derived assuming the linear
form of utility function when the loss random variable X follows Gamma or
Beta or Exponential or Pareto or Weibull or Lognormal or Burr Distribu-
tions. For the above mentioned distributions, Sections 3, 4 and 5 deal with
derivation of expressions for Pmax when the utility functions are quadratic,
exponential and fractional power. Section 6 compares the values of Pmax for
different utility functions and loss distributions Gamma, Pareto and Weibull
with similar values of the parameters.

2. Determination of maximum premium for linear utility

function

We consider combinations of linear utility function u(w) = w and differ-
ent loss distributions to evaluate the maximum premium. The probability
density function f(x) of the loss random variable X is assumed to exist.
Solving (1) yields

(2) Pmax = E(X).

Using (2), the expressions for Pmax are displayed in the following table.
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Table 1. Maximum premium for linear utility function.

Distribution Pmax

Gamma (α, β) αβ, α > 0, β > 0

Beta (α, β) α/(α+ β), α > 0, β > 0

Exponential (λ) 1/λ, λ > 0

Pareto (α, θ) αθ
θ−1 , α > 0, θ > 1

Weibull (α, β) βΓ
(

1 + 1
α

)

, α > 0, β > 0

Lognormal (µ, σ)
exp

(

µ+
σ2

2

)

, 0 < µ < ∞, σ > 0

Burr (α, γ, λ) Γ
(

α− 1
µ

)

Γ
(

1 + 1
µ

)

λ
1

µ

Γ (α)
, λ > 0, αµ > 1

The following figures depict the trend of maximum premium Pmax for
different loss distributions with different combinations of parametric values
of the loss distribution.
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Figure 1. Beta Distribution B(α, β)
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Figure 3. Pareto Distribution
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Figure 4. Burr Distribution
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Figure 5. Gamma Distribution
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Figure 6. Lognormal Distribution
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If the insured adopts a linear utility function, then from the above figures,
we conclude that

1. for loss distributions Gamma, Lognormal and Weibull, the maximum
premium increases as parameters of distributions increase. From in-
surer’s point of view, it is beneficial to use the above mentioned loss
distributions with large values of parameters,

2. if insured’s loss follows Exponential, Beta or Pareto distribution, the
maximum premium declines as parametric values increase. This situa-
tion is beneficial for the insured as he will have to be ready to pay less
premium,

3. with Burr as loss distribution with α, µ > 1, the maximum premium

(a) increases for λ ∈ (0, 1),

(b) decreases for λ > 1,

(c) stabilises for higher values of parameters α, λ and µ.

3. Determination of maximum premium for quadratic utility

function

For quadratic utility function, u(w) = −(a− w)2, w ≤ a, the premium Pmax

is found to be a solution of the equation

(3) Pmax
2 + 2(a− w)Pmax − 2(a− w)E(X) − E(X2) = 0.

The following table compiles the theoretical expressions of Pmax for different
loss distributions.

The following figures depict the trend of maximum premium Pmax for
different loss distributions with different combinations of parametric values.
Here we assume that initial wealth w = 100 and a = 105 so that a > w.
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Table 2. Maximum premium for quadratic utility function.

Distribution Pmax

Gamma
(α, β)

−a+ w ∓

√

a2 + 2aαβ + α(α + 1)β2 − 2aw − 2αβw + w2,
α > 0, β > 0

Beta (α, β) −a+ w ∓
√

a2 + 2a α
(α+β) +

α(α+1)
(α+β)(α+β+1) − 2aw − 2 α

(α+β)w + w2,

α > 0, β > 0

Exponential
(λ) −a+ w ∓

√

a2 + 2a 1
λ + 2

λ2 − 2aw − 2 1
λw +w2, λ > 0

Pareto (α, θ) −a+ w ∓
√

a2 + 2a αθ
θ−1 +

α2θ
(θ−2) − 2aw − 2 αθ

(θ−1) w + w2,

α > 0, θ > 2

Weibull
(α, β)

−a+ w ∓

√

a2 + 2aβΓ(1 + 1
α) + β2Γ

(

1+ 2
α

)

− 2aw − 2βΓ(1 + 1
α)w + w2,

α > 0, β > 0

LogNormal
(µ, σ)

−a+ w ∓
√

a2 + 2aeµ+σ2/2 + e2µ+2σ2

− 2aw − 2eµ+σ2/2w + w2,
0 < µ < ∞, σ > 0

Burr (α, µ, λ) −a+w∓

√

a2 + 2a
Γ(α− 1

µ )Γ(1+
1
µ )λ

1
µ

Γα +
Γ(α−

2
µ )Γ(1+

2
µ )λ

2
µ

Γα − 2aw − 2
Γ(α−

1
µ )Γ(1+

1
µ )λ

1
µ

Γα w + w2,

αµ > 2, λ > 0
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Figure 8. Beta Distribution B(α, β)
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Figure 9. Pareto Distribution
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Figure 10. Exponential Distribution
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Figure 11. Burr Distribution
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Figure 12. Weibull Distribution

0 0.5 1 1.5 2 2.5
0

5

10

15

µ

p
r
e

m
iu

m
 a

m
o

u
n

t

Premium amount with Lognormal distribution for second quadratic utility function

σ=.2
σ=.5
σ=.8

Figure 13. Lognormal Distribution



50 H.P.S. Kapoor and K. Jain

0 1 2 3 4 5 6
0

10

20

30

40

β
p

r
e

m
iu

m
−

v
a

lu
e

s

Premium amount with Gamma distribution for second quadratic utility function

α=.2
α=1.2
α=5.9

Figure 14. Gamma Distribution

The above figures lead to the conclusions that if insured has quadratic utility
function, then

1. with Weibull, Lognormal and Gamma as loss distributions, the maxi-
mum premium increases as parametric values increase.This is beneficial
for the insurer.

2. with Beta, Pareto and Exponential as loss distributions, the maximum
premium declines with an increase in the parametric values. It is bene-
ficial for the insured as he is willing to pay less premium but this causes
loss to the insurer.

3. with Burr as loss distribution with αµ > 2

• for α > λ, the maximum premium increases,

• for α ≤ λ, the maximum premium decreases and stabilises for higher
values of µ.

4. Determination of maximum premium for Exponential utility

function

For exponential utility function u(w) = −λe−λw, using (1), the premium
Pmax is a solution of the equation

(4) Pmax = Log [MX (λ)] /λ,

where MX(λ) is the moment generating function of the loss random vari-
able X at λ (Bowers et al., 1997). This is also known as Exponential
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Premium Principle. The expressions for Pmax values are compiled in the
following table for Gamma, Beta and Exponential distribution.

Table 3. Maximum premium for Exponential utility function.

Distribution Pmax

Gamma (α, β) [Log(1 − βλ)−α/λ], α, β, λ > 0

Beta (α, β) [Log1F1(α;β;λ)/λ], α, β, λ > 0
where 1F1(:; :; :) is the Generalised Hypergeo-
metric function*

Exponential (α) 1
λ log

(

α
α−λ

)

, α > λ

*Generalised Hypergeometric Function is defined as

1
pFq(a1, a2, a3, . . . , ap; b1, b2, b3, . . . , bq;x) =

∞
∑

k=0

∏p
i=1 (ai)k xk

∏q
i=1 (bi)k k!

,

where (n)k = Γ(n+k)
Γ(n) represents Pochhammer’s symbol (Zwillinger, 2000).

Remarks 1. (i) As the moment generating functions do not exist in case
of Pareto, Burr, Lognormal and Weibull distributions, (4) does not help in
writing the expressions for Pmax.

(ii) It is observed that for Exponential Distribution, the maximum pre-
mium values are negative or very close to zero. Hence it is practically not
advisable to consider exponential distribution as loss distribution in combi-
nation with exponential utility function.

The following figures depict the trend of Pmax for Gamma and Beta
distributions for some combinations of parametric values.
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Figure 15. Gamma Distribution
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Figure 16. Beta Distribution

From the above figures, it is observed that

1. with Gamma as loss Distribution, the maximum premium increases as
values of parameters increase, which is in the interest of the insurer,

2. with Beta Distribution, the maximum premium decreases as parameter
values increase. This situation is beneficial for the insured.

5. Determination of maximum premium for fractional power

utility function

The fractional power utility function is given by u(w) = wc, 0 < c < 1
(Dickson, 2005).

Using (1), it is seen that the premium Pmax is a solution of the equation

(5)
(c− 1)Pmax

2

2w
− Pmax + E(X) −

(

c− 1

2w

)

E(X2) = 0.

Under different loss distributions and w=100, the expressions for Pmax values
are depicted in the following table:
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Table 4. Maximum premium for fractional power utility function.

Distribution Pmax

Gamma (α, β)
[

w −

√

w2 − (c− 1) (2wαβ − (c− 1)(αβ2 +
(

αβ)
2
)

)

]

(c− 1)
,

α > 0, β > 0; c 6= 1.

Beta (α, β)
[

w −
√

w2 − (c− 1) (2w α
(α+β) − (c− 1)( α(α+1)

(α+β)(α+β+1) ))
]

(c− 1)
,

α > 0, β > 0; c 6= 1

Exponential (λ)
[

w −
√

w2 − (c− 1) (2w 1
λ − (c− 1)( 2

λ2 ))
]

(c− 1)
, λ > 0

Pareto (α, θ)
[

w −
√

w2 − (c− 1)(2w αθ
(θ−1) − (c− 1) α2θ

(θ−2))
]

(c− 1)
,

θ > 2, α > 0

Weibull (α, β)
[

w −

√

w2 − (c− 1) (2wβΓ(1 + 1
α )− (c− 1)β2Γ(1 + 2

α ))

]

(c− 1)
,

α > 0, β > 0

Lognormal
(µ, σ)

[

w −
√

w2 − (c− 1) (2weµ+σ2/2 − (c− 1)e2µ+2σ2)
]

(c− 1)
,

0 < µ < ∞, σ > 0

Burr (α, µ, λ)





w−

√

w2
−(c−1)(2w

Γ(α−

1
µ )Γ(1+ 1

µ )λ
1
µ

Γα
−(c−1)(

Γ(α−

2
µ )Γ(1+ 2

µ )λ
2
µ

Γα
)







(c−1) ,
αµ > 2, 0 < c < 1.

For initial wealth w = 100, the following figures depict the trend of maximum
premium Pmax under different loss distributions.
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Figure 17. Beta Distribution
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Figure 18. Pareto Distribution
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Figure 19. Exponential Distribution
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Figure 20. Burr Distribution
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Figure 21. Weibull Distribution
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Figure 23. Gamma Distribution

From the above figures, we conclude that if insured has fractional power
utility function

1. the maximum premium increases as parameters increase in case of loss
distributions Weibull or Lognormal or Gamma. This is good from in-
surer’s point of view,

2. the maximum premium declines as parametric values increase if insured
has Beta or Exponential as loss distributions. This is beneficial for the
insured as he has to be willing to pay less premium but causes loss to
the insurer,

3. with loss distribution Burr, the maximum premium increases for any
value of α, λ and c except when 1 < α < 2, λ > 1. It stabilises as µ
increases,

4. with Pareto as loss distribution, Pmax decreases as θ (shape parameter)
increases. It is also observed that it is higher for larger α.

Now we compare the premium amounts for different utility functions and
different loss distribution with similar values of the parameters.

6. Comparison of premium values for different utility

functions under different loss distributions

The following table depicts values of Pmax for Gamma, Pareto and Weibull
distributions with same values of shape and scale parameters.
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Table 5. Premium values

U(w) = −(a− w)2, w ≤ a, w = 100, a = 105

Distribution Parameter values Premium

amount

Gamma (α(shape), β(scale)) α = 2.3, β = .2
α = 5.9, β = 5.9

Pmax = 0.4684
Pmax = 37.3109

Pareto (α(scale), θ(shape)) θ = 2.3, α = .2
θ = 5.9, α = 5.9

Pmax = 0.3708
Pmax = 7.1943

Weibull (α(shape), β(scale)) α = 2.3, β = .2
α = 5.9, β = 5.9

Pmax = 0.1778
Pmax = 5.5236

U(w) = w,w = 100

Distribution Parameter values Premium

amount

Gamma (α(shape), β(scale)) α = 2.3, β = .2
α = 5.9, β = 5.9

Pmax = 0.46
Pmax = 34.81

Pareto (α(scale), θ(shape)) θ = 2.3, α = .2
θ = 5.9, α = 5.9

Pmax = 0.3538
Pmax = 7.1040

Weibull (α(shape), β(scale)) α = 2.3, β = .2
α = 5.9, β = 5.9

Pmax = 0.177183
Pmax = 5.46844

U(w) = wc, w = 100, c = .2

Distribution Parameter values Premium

amount

Gamma (α(shape), β(scale)) α = 2.3, β = .2
α = 5.9, β = 5.9

Pmax = 0.2402
Pmax = 35.4513

Pareto (α(scale), θ(shape)) θ = 2.3, α = .2
θ = 5.9, α = 5.9

Pmax = 0.3546
Pmax = 7.1124

Weibull (α(shape), β(scale)) α = 2.3, β = .2
α = 5.9, β = 5.9

Pmax = 0.1772
Pmax = 5.4729

The values in the above table lead to the conclusion that for quadratic and
linear utility functions, Pmax is highest for Gamma distribution for different
combinations of parameter values.
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