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Abstract

The target of this paper is to provide a compact review of the
Optimal Experimental Design, the continuous case. Therefore we are
referring to the general nonlinear problem in comparison to the linear
one.
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1. Introduction

The first statistical treatment under a nonlinear function came from the
pioneer of Statistics, R.A. Fisher. In Rothamsted Experimental Station, he
came across with the dilution series problem, Fisher (1922). Since then the
objectives of the experimenter can be:

(i) The response surface problem introduced by Box and Draper (1959).

(ii) The discrimination problem between rival models reviewed early by
Hill (1976), see also Atkinson & Donev (1992).

(iii) In some sense, all or a subset of the parameters to be estimated as well
as possible. This is the optimal design problem originated by Smith
(1918).
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The above (ii) and (iii) mentioned objectives are common to linear and
nonlinear experimental designs (LED and NLED) i.e when the assumed
suitable model is linear or nonlinear, with respect to its parameters, while
the RS is tackled for the LED.

Ford et al. (1989) review the NLED problem, Kitsos (1989) worked
with the sequential procedures, while Fedorov (1972) provided all the useful
results on the linear design. We shall not refer to the Bayesian approach
to this paper, although certainly needs particular interest, and perhaps an-
other paper. The nonlinear experimental design problem finds applications
in many fields: as a regression problem (continuous case) in chemical ki-
netics (chemistry, biology), or as a binary model (discrete case) in testing
explosives, biological assays etc. We are restricted in the continuous case,
emphasizing that the discrete case in NLED has not such a theoretical in-
sight as in the LED problems (Number Theory, Gometrical implementations
etc). The emphasis will be on the target (3).

Let U ⊆ R
k be the space in which the covariates u = (u1, u2, . . . , uk)

take their values and is known as experimental region. The parameter
space Θ ⊆ R

p is the set where the parameters ϑ = (ϑ1, ϑ2, . . . , ϑp) take
their values. Let Ξ be the family of measures ξ such that ξ(u) ≥ 0 u ∈ U
and

∫

ξ(du) = 1, the design measure, while the pair (U, ξ) will be called the
design. The support of the design Supp(ξ), say, is the set of points u for
which ξ(u) > 0. This is only a theoretical consideration, as it might be a
design point optimal, but with zero design measure at this point. Practically
speaking the design measure acts as the proportion of observations devoted
to the optimal design points.

When the response y is supposed to take any value in Ψ we also sup-
pose that a regression model (in general nonlinear) exists consisting of the
deterministic portion f(u, ϑ) and the stochastic portion, e known as error,
linked through the (continuous) regression formulation yi = f(ui, ϑ) + ei.
Usually we denote η = E(y).

Example 1. The Oxidation of Benzene model is, among the chemical re-
action models, one with the most necessary needed information. Includes 4
input variables and 4 parameters:

η =
ϑ1 exp (−θ3u3) θ2 exp (−θ4u3)u1u2

θ1 exp (−θ3u3)u1 + u4ϑ2 exp (−θ4u3)u2
,
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with u = (u1, u2, u3, u4) ∈ U = ∆1 × ∆2 × ∆3 × {5.75} ⊆ R
4, Θ ⊆ R

4,
∆1 = [10−3, 16·10−3], ∆2 = [10−3, 4·10−3], ∆3 = [623, 673] and ϑ1, ϑ2, ϑ3, ϑ4

parameters arising in Arrhenius law, where n: the initial reaction rate,
u1: the concentration of oxygen, u2: the concentration of benzene, u3 =
1
T − 0.0015428, T : the absolute temperature of the reaction and u4: the
observed stoichiometric number.

If we assume that f(u, ϑ) = ϑTg(u) with g being a (vector) continuous
function of u, then the nonlinear problem is reduced to the so called lin-
ear problem, when the Least Square Estimates can always obtained under
certain conditions, Wu (1981), in both linear and nonlinear case.

In principle, Fishers information measures is strongly related with the
involved uncertainty to the physical phenomenon under investigation. In
NLEDr problems the variance depends on the unknown parameter we want
to estimate, i.e., σ2 = σ2(u, ϑ), while in LED in the linear case it is assumed
independent of the parameter vector ϑ. In practice it may or may not be
possible to assume that is “known” provided a guess, or knowledge from a
previous experiment. In principle, this is the main difference between the
linear and the non-linear case. Let ∇η denote the vector ∇η = ( ∂η

∂ϑj
)T, j =

1, 2, . . . , p. Then for the exponential family of models Fisher’s information
matrix is defined to be

I(ϑ, u) = σ−2(∇η)(∇η)T.(1)

Moreover in many of the nonlinear problems the covariate u and the pa-
rameter ϑ appear together linearly in the form ϑTu. Thus, the nonlinear
model is “intrinsic linear” η = η(ϑTu) as far as the parameter is concerned,
then Fishers information matrix can be evaluated proportional to the matrix
produced by the input vector u.

The concept of the average-per-observation information matrix will play
an important role in our scenario for the nonlinear experiment design prob-
lem. It is defined for the continuous case

M(ϑ, ξ) =

∫

U
I(ϑ, u)ξ(du).(2)

The idea of Caratheodory’s Theorem so essential for the linear experi-
ment design, can be used for the average information matrix in nonlin-
ear problems, Titterington (1980). Now, suppose the matrix M = M(ϑ, ξ)
is partitioned in the form M = (Mij), with M11 ∈ R

s×s, M12 ∈ R
s×(p−s),
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M22 ∈ R
(p−s)×(p−s), 1 ≤ s < p. Then we define the matrix: Ms = Ms(ϑ, ǫ) =

M11 −M12M
−

22M
T
12, with M−

22 being a generalized inverse of M22. This par-
tition is helpful when our interest lies in estimating the leading s < p pa-
rameters in the vector ϑ. Moreover in NLED, a useful approximation to the
covariance matrix is

M(ϑ, ξ) =
1

n
(∇η)T∇η =

σ2

n
C−1(ϑ̂, ξ).

In both cases, linear and nonlinear, the uncertainty is measured with the
entropy which equals to log detC.

The idea of the design matrix is essential in LED, while in nonlin-
ear models we can extend the definition approximately through the partial
derivatives of ϑ with ϑ taking its “true” value, ϑt. We define the n × p
matrix

X = (xij) ∈ R
n×p with xij =

∂f(ui, ϑ)

∂ϑj

∣

∣

∣

∣

ϑ=ϑt

.(3)

Following the LED pattern an approximation to the covariance matrix can
be defined as C ∼= [XT(ϑt)X(ϑt)]

−1σ2 in NLED problems as well.

2. Locally Optimal Designs

It is the ϑ-dependence which leads to the term “locally optimal”: the op-
timal design depends on the true value of ϑ, therefore it might be optimal
“locally”.

Suppose we wish to estimate a set of linear combinations of the param-
eter vector ϑ = (ϑ1, . . . , ϑp). This might lead to an estimation of the vector
ϑ itself, some linear combinations of the p components of ϑ or to s ≤ p com-
ponents. Let Q ∈ R

s×p, 1 ≤ s ≤ p, be the matrix of the known coefficients
defining and the quantities of interest are Qϑ. If rankQ = p, when s = p,
the matrix Q is nonsingular. If s < p we suppose that rankQ = s. Then
we can define the following operator JQ applied to M, through the above
matrix Q:

JQ = QM−(ϑ, ξ)QT,(4)

with M− the generalized inverse of M and QT ∈ R
p×s.
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Given the above notation we need a real valued function, ω say, applied
to JQ to be used as an optimality criterion. We choose ω to be a convex
decreasing function on the set of nonnegative definite matrices Rs×s

+ say.

Definition. The design measure ξ∗ is called ω-optimal if and only if (iff):

ω{JQ (M(ϑ, ξ∗))} = min{ω
(

QM−(ϑ, ξ)QT
)

, ξ ∈ Ξ}.(5)

We now examine the special cases of ω and Q which lead us to traditional
definitions, adopted from the linear case. The special cases we shall consider
for ω are

ω(·) =



























ω1(·) = log det
(

QM−QT
)

, D− optimal,

ω2(·) = tr
(

QM−QT
)

, A− optimal,

ω3(·) = max eigenval
(

QM−QT
)

, E− optimal,

ω4(·) = sup tr
(

I(ϑ, u)QM−QT
)

, G− optimal,

(6)

The most often considered cases for Q are

Q =



























A ∈ R
p×p, rank A = p, DA−, GA−, EA− ,AA−optimality,

I ∈ R
p×p \ Ip, D−, G−, E−, A− optimality,

[

Is : Os×(p−s)

]

, Is ∈ R
p×p,Ds, Gs, Es, As−optimality,

c ∈ R
p×1, c− optimality.

Actually, under our notation, the traditionally described as ϕ criterion,
Kiefer and Wolfowitz (1960), is ϕ = ω ◦JI, where ◦ denotes the composition
of two functions. Corresponding to ωi, i = 1, 2, 3, 4 we obtain ϕi = ωi ◦ JI,
i = 1, 2, 3, 4. The optimality criteria D(ϑ) and G(ϑ) were introduced by
White (1973) who also extended Kiefer and Wolfowitz′s (1960) equivalence
theorem between D– and G–optimality criteria. Moreover D–optimality
remains invariant to linear transformations in LED and NLED, an essential
difference with the other optimality criteria. The equivalence theorem holds
for a subset of parameters as well, Karlin and Studden (1966) for LED,
White (1973) for NLED, when A = [Is : Os×(p−s)] and JA(M) = Ms. The
essential difference that in NLED the stated equivalence theorems hold with
the parameter taking its true value!
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A(ϑ)–optimality minimizes the sum of approximate variances of the pa-
rameter estimates, as in the linear case (Titterington (1980)), while E(ϑ)–
optimality seeks to minimize the variance of the worst-estimated linear com-
bination cTϑ, with cTc = 1.

Hill (1980) defined when model is partially and Khuri (1984) provided,
a sufficient condition for Ds(ϑ)–optimality. The Michaelis-Menten model
is a typical example, Kitsos (1986) of a partially nonlinear model. For
the model f(u, ϑ) = l(u, β1) + m(u, β2) where β1 = (ϑ1, ϑ2, . . . , ϑs), β2 =
(ϑs+1, ϑs+2, . . . , ϑp), i.e., ϑ = (β1, β2) while l(u, β1) = ϑ0+ϑ1u+· · ·ϑsus and
m(u, β2) any nonlinear function, the D(ϑ)–optimal and the Ds(ϑ)–optimal
designs depends on β2. It is in fact convenient, if we have a design cri-
terion, which will remain invariant under certain transformations of the
design space. As this is not true for c–optimality the “canonical form” was
introduced for it, Kitsos (1986), with application to simple logit model and
proved that we can have a group of affine transformations to obtain the
canonical form for the p–variable logit, see Kitsos (2011) for details.

For the linear model the geometry was built up not on the design space
U , but on its image through g, U0 = g(U) say, known as induced design
space. Furthermore, for this transformation the information M(ξ) is pre-
served, expressed in terms of the family of design measures Ξ0 = {ξ0 =
ξg−1, ξ ∈ Ξ}.

Let U0 be a compact set which spans R
p (which spans the leading s-

dimensional coordinate subspace). Then:

(i) the D–optimal design problem for U0 is the dual of the minimal ellip-
soid problem for U0 (Sibson, 1972),

(ii) the Ds–optimal design problem is the dual of the thinnest cylinder
problem (Silvey & Titterington, 1973).

In both cases the two problems share a common extreme value. When
ϑ takes its true value all the geometric aspects covered by Titterington
(1980) can be applied to the nonlinear case. The geometry of c–optimality
is covered by Elfving (1952). This excellent theorem remain invariant to
time, and has been used extensively to the (non-linear problem, eventually
of) calibration problem, Kitsos and Kolovos (2010).

Example 2. The geometrical insight of the NLED can be clarified with he
cosinor model, y(t) = n(t, ϑ) + ǫ with n(t, ϑ) = ϑ0 + ϑ1 cos(ωt+ ϑ2), where
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y(t): the response at time t ∈ [0, 1], i.e., the biological rhythm we want to
study, ϑ0: the mesor, ϑ1: the amplitude, ϑ2: the acrophase, ω: the angular
frequency, and ǫ: the error term with the usual normality assumption.

Interest is, mainly, in efficient estimation of the relative stability, i.e., the
ratio g = g(ϑ0, ϑ1) = ϑ1/ϑ0 < 1 is to be estimated as well as possi-
ble. For the 4-point D–optimal design the approximate variance, is V4 =
(σ2/(nϑ2

0))[(ϑ1/ϑ0)
2 + 2], while for the 2-point c–optimal the variance is

V2 = ϑ−2
0 (σ2/n). The corresponding design measure and the optimal de-

sign points can be also evaluated. This model, was suitably adopted for the
Robotic Total Stations (RTS) when operated in tracking mode, Zarikas et
al. (2010). Analysis of the results reveals a reduction (of the order of 3% to
10%) in the variance of the effective amplitude if the optimal design method
is used.

3. Estimation: Static and Sequential Design

In the linear case, with a typical example the p-term polynomial regres-
sion, the D–optimal design has a tendency to use as optimal design points
the “end” points of the design space, among others, when p ≥ 2. Under
some considerations, Fedorov (1972, Th. 2.2.3), the design points for D–
optimality can be defined as roots of a hypergeometric function (Legendre,
Jacobi, Laguerre, Hermite) and the design then allocates measure 1/p at
these points.

This ϑ–dependence requires the development of alternative strategies
for the construction of experimental designs in practice. Two procedures
are proposed:

(i) Choose (the optimal) design points. Perform the experiment once at
these points. (static design).

(ii) Choose (the possible optimal) initial design points. Perform the exper-
iment at these points and estimate the parameters. Re-assess the (op-
timal) design points (using the estimates of the parameters). Perform
the experiment at these new points and get new estimates. Continue
the procedure until a predefined stopping rule is satisfied (sequential
design).
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An attempt to avoid ϑ–dependence has been made through S–optimality,
“averaging” over all possible values of the parameter, was first attempted by
Lauter (1974). A discrimination approach was proposed by Stone and Mor-
ris (1985), based on two alternative criteria for the static problem. Both
criteria accepted a criticism by Ford et al. (1989). Another alternative
method of avoiding the ϑ–dependence problem is the maximin design ap-
proach. That is we solve

maxmin{Φ(M(ϑ, ξ))�Φ(M(ϑ, ξ∗))}, ξ ∈ Ξ, ϑ ∈ Θ,(7)

with � = / or −, and ξ∗ = ξ∗(ϑ) the locally optimum design for ϑ. The
maxmin efficiency criterion for the calibration problem is equivalent to D–
optimality, Kitsos (1989).

Adopting the sequential procedure we choose an initial design, using
prior knowledge on ϑ and get an estimate of the parameters. This estimate
is useful as an initial guess to redesign, re-estimate and so on. The question
is “how we choose the next design point”? The answer is: choose the
next design point that, which minimizes the estimators generalized variance.
That is a D(ϑ)–optimality criterion is used for choosing the next design
point. For the particular case of D(ϑ)–optimality, when the initial design
is D–optimal the limiting is also, providing the stochastic approximation
approach has been adopted, see Kitsos (1989) for details. One main virtue
of the linear theory is the dichotomous convergence theorem of Wu and
Wynn (1978) for any criterion function Φ, and for the sequence M(ξn).

In NLED problems we try to apply the LED theory to construct the
confidence intervals. But the nonlinearity is essential and various attempts
have been developed to overpass it. In the nonlinear case confidence regions
sometimes appear to have “banana-shapes”.

Beale (1960), in his pioneering paper, suggested a dimensionless empirical
measure of nonlinearity Λ∗ = Λ∗(s2) and a theoretical measure of nonlin-
earity, Λ = Λ(σ2) say, while the minimum value of the theoretical measure
of nonlinearity, Λ0 say, was named the intrinsic nonlinearity, a sort of cur-
vature of the solution locus, of the assumed correct model. Bates and Watts
(1980) using ideas from differential geometry proved that Λ0 is one quar-
ter of the mean square intrinsic curvature. Moreover they proved that by
replicating the design r times the curvature at any point in any direction is
reduced by a factor 1/

√
r. The measure of nonlinearity is used to adjust the

confidence region from the usual form, using the following form, introducing
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an extra parameter λ,

(ϑ− ϑ̂)T(XTX)(ϑ − ϑ̂) ≤ λps2F (α; p, n − p),

with X as in (3) and F (α; p, n − p) is as usual the 100(1 − α)% of the F
distribution with p and n− p degrees of freedom. The new parameter λ is
given by

λ =



























1, linearization without Beale′s assumption,

1 + n
n−1Λ0, if p = 1,

1 + n(p+2)
(n−p)pΛ0, if p ≥ 2,

B = 1 + n
n−2F

−1/2, for every p,

(8)

where B is the supremum value of Beales measure of nonlinearity, see Kitsos
(2001) for details, and can be applied in any case.

4. Discussion

Experimental design in the linear case started as an optimum allocation
of the observations at the treatment points. In his classical book, Fedorov
(1972) summarized and extended all the linear work. The main target
through this theoretical framework is to obtain methods –possibly based
on algorithms– to get the optimum design measure for estimating. He pro-
vided the first algorithm, but it was only in Wu & Wynn (1978) that a
general dichotomous convergence theorem was obtained, concerning the con-
vergence of the sequence of design measures. The theoretical framework in
the linear case is completed by the duality theory which first came to light
in Lagrangian theory (Silvey (1972), Sibson (1972), Silvey & Titterington
(1973), Pukelsheim & Titterington (1983)) while Fornius (2008) worked on
optimality concerning quadratic logistic.

Geometry can be really very helpful to understand the optimality cri-
teria: D–optimality minimizes the volume of the confidence ellipsoid, and
remains invariant to linear transformation. This is not the case for the G–,
A– optimality, as the volume of the confidence ellipsoid might remain con-
stant, but not the axes of the ellipsoid which are related to these criteria.
The c–optimality is based on the geometrical oriented theorem of Elfvings.
The sequential nature of the design, Ford et al. (1985) among others, in
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the linear case, is rather based on the augmentation of the data than an
approach to estimate the parameters and not a method for point estima-
tion. The design points are very well defined at the linear case, while in the
nonlinear case are heavily depending on the parameters (which is itself the
problem in nonlinear cases), and therefore we are referring to local optimal
design. In general, the NLED was constructed as a generalization of LED
with ϑ being true. The LED it is not a special case of NLED, i.e. it cannot
be provided from a reduced NLED theory. The main problem, we believe,
is the study of the sequence M(ϑn, ξn) in NLED problems.
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