Discussiones Mathematicae Probability and Statistics 31 (2011) 71–75 doi:10.7151/dmps.1139

NOTE ON THE CORE MATRIX PARTIAL ORDERING

JACEK MIELNICZUK

Department of Applied Mathematics and Computer Science University of Life Sciences in Lublin Akademicka 13, 20–950 Lublin, Poland **e-mail:** jacek.mielniczuk@up.lublin.pl

Abstract

Complementing the work of Baksalary and Trenkler [2], we announce some results characterizing the core matrix partial ordering.

Keywords and phrases: core inverse, core partial ordering, generalized inverse, group inverse, left star partial ordering, minus partial ordering, Moore-Penrose inverse, right sharp partial ordering.

2010 Mathematics Subject Classification: 15A09, 15A45.

1. Preliminaries

Let $\mathbb{C}^{m \times n}$ be the set of $m \times n$ matrices with complex entries. We will denote the conjugate transpose, range (column space), and nullspace of $A \in \mathbb{C}^{m \times n}$ by A^* , R(A), and N(A), respectively. P_A will stand for the orthogonal projector on R(A). We use I to denote an identity matrix with dimensions following from the context.

We start by stating several basic facts on generalized inverses. As references, one can consult [4, Sections 2.2–2.5] or [5, Sections 4.2–4.5].

We let A^- designate a generalized inverse of A, this being defined as a solution to the matrix equation AXA = A. A least squares generalized inverse of $A \in \mathbb{C}^{m \times n}$, written as A_{ℓ}^- , is defined to be a solution to the matrix equation $AX = P_A$ ([4, Theorem 2.5.14]). The collection of all $A_{\ell}^$ is denoted by $\{A_{\ell}^-\}$. In light of Theorems 2.5.24 (ii) and 2.5.27 in [4], the Moore-Penrose inverse of A is the unique element A^+ of $\{A_{\ell}^-\}$ with the property $R(A^+) = R(A^*)$. The general expression of A_{ℓ}^- can be written as $A_{\ell}^- = A^+ + (I - A^+ A) U$, where $U \in \mathbb{C}^{n \times m}$ is arbitrary ([4, Theorem 2.5.17]). We will use the following simple fact ([4, Theorem 2.5.28 (iv)]): $A^+ = (A^*A)^+ A^*$.

We shall mostly be concerned with core matrices. Recall that a square matrix A is said to be core if R(A) and N(A) are complementary subspaces, which is equivalent to saying that $R(A) = R(A^2)$. Given a core matrix A, we let Q_A represent the projector which projects a vector on R(A) along N(A). A *c*-inverse A_c^- of a core matrix A is defined to be a solution to the matrix equation $XA = Q_A$ ([4, Definition 6.4.1]). We let $\{A_c^-\}$ denote the collection of all A_c^- . Among the *c*-inverses, those having $R(A_c^-) = R(A)$ are called χ -inverses ([4, Definition 2.4.1]). According to Theorem 2.4.3 and Remark 2.4.14 of [4], the group inverse $A^{\#}$ is the uniquely determined χ -inverse satisfying the following condition $N(A^{\#}) = N(A)$. It is evident that $A^{\#}$ is a reflexive generalized inverse of A such that $AA^{\#} = A^{\#}A$ ([4, Theorem 2.4.6]).

Following [2], we define the core inverse A^{\oplus} by $A^{\oplus} = A^{\#}AA^+$. In fact, A^{\oplus} is the unique generalized inverse of A, which is both a least squares inverse and a χ -inverse of A. In [2] there are presented some results on characterizations of A^{\oplus} . Finally, let us point out that the core inverse coincides with the hybrid inverse $A^-_{\rho^*\chi}$ defined by Rao and Mitra [5, Section 4.10.2].

2. Core matrix partial order

We will be concerned here with the core relation defined by Baksalary and Trenkler [2].

Definition 1. For a pair of core matrices $A, B \in \mathbb{C}^{n \times n}$ we define the core relation $\langle \oplus \rangle$ by saying that $A \langle \oplus \rangle B$ if the following condition is satisfied:

(1)
$$A^{\oplus}(B-A) = (B-A)A^{\oplus} = 0.$$

The lemma below gives two other conditions that are equivalent to (1).

Lemma 2. Let A and B be core matrices of the same order. Then the following statements are equivalent:

- 1. $A <^{\oplus} B$,
- 2. $A^+(B-A) = (B-A)A^\# = 0,$
- 3. $A^*A = A^*B$ and $BA = A^2$.

Proof. We first recall the well-known fact ([3, Fact 2.10.12]) that rank(AB) = rank(A) if and only if R(AB) = R(A). This result implies, and is in fact equivalent to, the statement that rank(AB) = rank(B) if and only if N(AB) = N(B).

To establish the claim, observe that A^{\oplus} , A^+ , $A^{\#}$ and A have the same rank. Hence, $R(A^{\oplus}) = R(A^{\#}) = R(A)$ and $N(A^{\oplus}) = N(A^+) = N(A^*)$, from which the required result follows.

Let us mention here another equivalent formulation of condition (1). As observed in [2, (3.21)], $A <^{\oplus} B$ if and only if $A^+B = A^+A$ and $BA = A^2$.

Another concept referred to is the minus partial ordering (see, for example, [4, Chapter 3]). We say that $A \in \mathbb{C}^{m \times n}$ is below $B \in \mathbb{C}^{m \times n}$ under the minus partial order, and write $A <^{-} B$, if $(A-B)A^{-} = 0$ and $A^{-}(A-B) = 0$ for some generalized inverse A^{-} .

It is worth making the following Proposition, which includes Theorem 8 in [2].

Proposition 3. If $A <^{\oplus} B$ then $A <^{-} B$, $R(A) \subset R(B)$, $R(A^*) \subset R(B^*)$. The relation $<^{\oplus}$ is reflexive and antisymmetric.

The following Theorem describes a new property of the core relation $<^{\oplus}$.

Theorem 4. $A <^{\oplus} B$ if and only if $\{B_{\ell}^{-}\} \subset \{A_{\ell}^{-}\}$ and $\{B_{c}^{-}\} \subset \{A_{c}^{-}\}$.

Proof. For proof of necessity, assume that $G \in \{B_{\ell}^{-}\}$. Since $A <^{\oplus} B$, we have $A^*A = A^*B$ and $R(A) \subset R(B)$. Therefore $A^*AG = A^*BB^+ = A^*$. Premultiplying this relationship by $A(A^*A)^+$ yields $AG = AA^+$, which justifies $\{B_{\ell}^-\} \subset \{A_{\ell}^-\}$. Suppose next that $G \in \{B_c^-\}$. Since $BA = A^2$, we get $GA = GA^2A^{\#} = GBAA^{\#} = Q_BAA^{\#} = AA^{\#}$. This proves that $\{B_c^-\} \subset \{A_c^-\}$.

To show sufficiency, note that our assumption $\{B_c^-\} \subset \{A_c^-\}$ forces $A = B^{\#}A^2$. Then, clearly, $R(A) \subset R(B)$, and consequently, $BA = BB^{\#}A^2 = A^2$, as needed. Next, to establish $A^*A = A^*B$, we consider the general expression $B_{\ell}^- = B^+ + (I - B^+B)U$. If $\{B_{\ell}^-\} \subset \{A_{\ell}^-\}$, then $AB_{\ell}^- = AB^+$,

and consequently, $A(I - B^+B)U = 0$ for every $U \in \mathbb{C}^{n \times n}$, which implies that $A = AB^+B$. Hence $R(A^*) \subset R(B^*)$. Moreover, $\{B_\ell^-\} \subset \{A_\ell^-\}$ guarantees that $A^* = A^*AB^+$. Therefore $A^*B = A^*AB^+B = A^*A$, as required.

Theorem 4 guarantees that the core relation is transitive. On account of Proposition 3, we obtain that the relation \langle^{\oplus} defines a matrix partial ordering ([2, Theorem 6]).

In the following we shall link different types of partial orders together. The following terminology will be required ([4, Definitions 6.3.1, 6.5.2]).

For $A, B \in \mathbb{C}^{m \times n}$, we define the left star relation * < by saying that A* < B if $R(A) \subset R(B)$ and $A^*A = A^*B$.

For core matrices $A, B \in \mathbb{C}^{n \times n}$ we define the right sharp relation $\langle \#$ by setting A < #B if $R(A^*) \subset R(B^*)$ and $A^2 = BA$.

The star relation is due to Baksalary and Mitra [1]. As is well known, the left star and the right sharp relation are partial orders ([1], [4, Corollary 6.3.10])

Proposition 3 permits us to conclude with the following

Proposition 5. $A <^{\oplus} B$ if and only if $A \ast < B$ and A < #B.

As a matter of fact, Proposition 5 states that the core relation is an intersection partial ordering ([4, Definition A.8.1]).

Some remarks are due. It was our intention here to present a fairly simple and selfcontained proof of Theorem 4. However, once Proposition 5 is established, Theorem 4 may be achieved by appealing to characterizations of one-sided orders as given by Theorems 6.4.8 and 6.5.17 in [4].

References

- J.K. Baksalary and S.K. Mitra, Left-star and right-star partial orderings, Linear Algebra Applications 149 (1991) 73–89.
- [2] O.M. Baksalary and G. Trenkler, *Core inverse of matrices*, Linear and Multilinear Algebra 58 (2010) 681–697.
- [3] D.S. Bernstein, Matrix Mathematics: Theory, Facts and Formulas (Princeton University Press, 2009).

- [4] S.K. Mitra, P. Bhimasankaram and S.B. Malik, Matrix Partial Orders, Shorted Operators and Applications (World Scientific, 2010).
- [5] C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and its Applications (Wiley, 1971).

Received 19 May 2011