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Abstract

Complementing the work of Baksalary and Trenkler [2], we an-
nounce some results characterizing the core matrix partial ordering.
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1. Preliminaries

Let Cm×n be the set of m×n matrices with complex entries. We will denote
the conjugate transpose, range (column space), and nullspace of A ∈ C

m×n

by A∗, R(A), and N(A), respectively. PA will stand for the orthogonal
projector on R(A). We use I to denote an identity matrix with dimensions
following from the context.

We start by stating several basic facts on generalized inverses. As refe-
rences, one can consult [4, Sections 2.2–2.5] or [5, Sections 4.2–4.5].

We let A− designate a generalized inverse of A, this being defined as
a solution to the matrix equation AXA = A. A least squares generalized
inverse of A ∈ C

m×n, written as A−

ℓ , is defined to be a solution to the
matrix equation AX = PA ([4, Theorem 2.5.14]). The collection of all A−

ℓ

is denoted by
{

A−

ℓ

}

. In light of Theorems 2.5.24 (ii) and 2.5.27 in [4], the
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Moore-Penrose inverse of A is the unique element A+ of
{

A−

ℓ

}

with the
property R (A+) = R (A∗). The general expression of A−

ℓ can be written
as A−

ℓ = A+ + (I −A+A)U , where U ∈ C
n×m is arbitrary ([4, Theorem

2.5.17]). We will use the following simple fact ([4, Theorem 2.5.28 (iv)]):
A+ = (A∗A)+ A∗.

We shall mostly be concerned with core matrices. Recall that a square
matrix A is said to be core if R(A) and N(A) are complementary subspaces,
which is equivalent to saying that R(A) = R

(

A2
)

. Given a core matrix A,
we let QA represent the projector which projects a vector on R(A) along
N(A). A c-inverse A−

c of a core matrix A is defined to be a solution to the
matrix equation XA = QA ([4, Definition 6.4.1]). We let {A−

c } denote the
collection of all A−

c . Among the c-inverses, those having R (A−
c ) = R (A)

are called χ-inverses ([4, Definition 2.4.1]). According to Theorem 2.4.3
and Remark 2.4.14 of [4], the group inverse A# is the uniquely determined
χ-inverse satisfying the following condition N

(

A#
)

= N(A). It is evident
that A# is a reflexive generalized inverse of A such that AA# = A#A ([4,
Theorem 2.4.6]).

Following [2], we define the core inverse A⊕ by A⊕ = A#AA+. In fact,
A⊕ is the unique generalized inverse of A, which is both a least squares
inverse and a χ-inverse of A. In [2] there are presented some results on
characterizations of A⊕. Finally, let us point out that the core inverse
coincides with the hybrid inverse A−

ρ∗χ defined by Rao and Mitra [5, Section
4.10.2].

2. Core matrix partial order

We will be concerned here with the core relation defined by Baksalary and
Trenkler [2].

Definition 1. For a pair of core matrices A,B ∈ C
n×n we define the core

relation <⊕ by saying that A <⊕ B if the following condition is satisfied:

(1) A⊕(B −A) = (B −A)A⊕ = 0.

The lemma below gives two other conditions that are equivalent to (1).

Lemma 2. Let A and B be core matrices of the same order. Then the

following statements are equivalent:
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1. A <⊕ B,

2. A+(B −A) = (B −A)A# = 0,

3. A∗A = A∗B and BA = A2.

Proof. We first recall the well-known fact ([3, Fact 2.10.12]) that
rank(AB) = rank(A) if and only if R(AB) = R(A). This result implies,
and is in fact equivalent to, the statement that rank(AB) = rank(B) if and
only if N(AB) = N(B).

To establish the claim, observe that A⊕, A+, A# and A have the same
rank. Hence, R (A⊕) = R

(

A#
)

= R (A) and N (A⊕) = N (A+) = N (A∗),
from which the required result follows.

Let us mention here another equivalent formulation of condition (1). As
observed in [2, (3.21)], A <⊕ B if and only if A+B = A+A and BA = A2.

Another concept referred to is the minus partial ordering (see, for exam-
ple, [4, Chapter 3]). We say that A ∈ C

m×n is below B ∈ C
m×n under the

minus partial order, and write A <− B, if (A−B)A− = 0 and A−(A−B) = 0
for some generalized inverse A−.

It is worth making the following Proposition, which includes Theorem
8 in [2].

Proposition 3. If A <⊕ B then A <− B, R(A) ⊂ R(B), R (A∗) ⊂ R (B∗).
The relation <⊕ is reflexive and antisymmetric.

The following Theorem describes a new property of the core relation <⊕.

Theorem 4. A <⊕ B if and only if
{

B−

ℓ

}

⊂
{

A−

ℓ

}

and {B−
c } ⊂ {A−

c }.

Proof. For proof of necessity, assume that G ∈
{

B−

ℓ

}

. Since A <⊕ B,
we have A∗A = A∗B and R(A) ⊂ R(B). Therefore A∗AG = A∗BB+ = A∗.
Premultiplying this relationship by A (A∗A)+ yields AG = AA+, which
justifies

{

B−

ℓ

}

⊂
{

A−

ℓ

}

. Suppose next that G ∈ {B−
c }. Since BA = A2,

we get GA = GA2A# = GBAA# = QBAA
# = AA#. This proves that

{B−
c } ⊂ {A−

c }.

To show sufficiency, note that our assumption {B−
c } ⊂ {A−

c } forces A =
B#A2. Then, clearly, R(A) ⊂ R(B), and consequently, BA = BB#A2 =
A2, as needed. Next, to establish A∗A = A∗B, we consider the general
expression B−

ℓ = B++(I −B+B)U . If
{

B−

ℓ

}

⊂
{

A−

ℓ

}

, then AB−

ℓ = AB+,
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and consequently, A (I −B+B)U = 0 for every U ∈ C
n×n, which implies

that A = AB+B. Hence R (A∗) ⊂ R (B∗). Moreover,
{

B−

ℓ

}

⊂
{

A−

ℓ

}

guarantees that A∗ = A∗AB+. Therefore A∗B = A∗AB+B = A∗A, as
required.

Theorem 4 guarantees that the core relation is transitive. On account of
Proposition 3, we obtain that the relation <⊕ defines a matrix partial or-
dering ([2, Theorem 6]).

In the following we shall link different types of partial orders together.
The following terminology will be required ([4, Definitions 6.3.1, 6.5.2]).

For A,B ∈ C
m×n, we define the left star relation ∗ < by saying that

A∗< B if R(A) ⊂ R(B) and A∗A = A∗B.

For core matrices A,B ∈ C
n×n we define the right sharp relation <#

by setting A <#B if R (A∗) ⊂ R (B∗) and A2 = BA.

The star relation is due to Baksalary and Mitra [1]. As is well known,
the left star and the right sharp relation are partial orders ([1], [4, Corollary
6.3.10])

Proposition 3 permits us to conclude with the following

Proposition 5. A <⊕ B if and only if A∗< B and A <#B.

As a matter of fact, Proposition 5 states that the core relation is an inter-
section partial ordering ([4, Definition A.8.1]).

Some remarks are due. It was our intention here to present a fairly
simple and selfcontained proof of Theorem 4. However, once Proposition 5
is established, Theorem 4 may be achieved by appealing to characterizations
of one-sided orders as given by Theorems 6.4.8 and 6.5.17 in [4].
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