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Abstract

One of the main goals in times series analysis is to forecast future
values. Many forecasting methods have been developed and the most
successful are based on the concept of exponential smoothing, based
on the principle of obtaining forecasts as weighted combinations of
past observations. Classical procedures to obtain forecast intervals
assume a known distribution for the error process, what is not true in
many situations. A bootstrap methodology can be used to compute
distribution free forecast intervals. First an adequately chosen model is
fitted to the data series. Afterwards, and inspired on sieve bootstrap,
an AR(p) is used to filter the series of the random component, under
the stationarity hypothesis. The centered residuals are then resampled
and the initial series is reconstructed. This methodology will be used to
obtain forecasting intervals and for treating missing data, which often
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appear in a real time series. An automatic procedure was developed
in language and will be applied in simulation studies as well as in
real examples.

Keywords: bootstrap, forecast intervals, missing data, time series
analysis.

2010 Mathematics Subject Classification: 62G32, 62E20, 65C05.

1. Motivation and scope of the paper

Time series analysis deals with records collected over time. One distin-
guishing feature in time series data is that time order is important and the
records are usually dependent. Depending on the application, data may
be collected hourly, daily, weekly, monthly or yearly, etc. Time series arise
in many different contexts. Its impact on scientific, economic and social
applications is well recognized by the large list of fields in which impor-
tant time series problems may arise. Just to refer a few we can mention
economics (daily stock market, monthly unemployment figures,...), social
sciences (populations series of birthrates, school enrollments,...), medicine
(blood pressure measurements,...), physical sciences (meteorological data,
geophysics data,...), environmental sciences (global warming data, levels of
pollution,...), etc. Time series can show different displays, see Figure 1 for
some examples.

In time series analysis many challenging topics can be pointed out:

• Obtain point and interval forecasting, i.e., consider the time series to
gain some insight into the future. This is one of the main objectives
in time series analysis.

• Deal with the existence of missing values which causes difficulties
in producing reliable and sound statements about the variables con-
cerned. It happens in many environmental situations (e.g. time series
on water quality data are sometimes interrupted due to several causes:
changes in analytical methodology, miscommunication, (temporary)
financial cuts, etc.).

• Predict extreme or even rare events that can occur beyond the avail-
able data. This is crucial in many environmental situations (e.g. daily
levels of a river, hourly ozone concentration, etc). Here we are mainly
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Figure 1. Some examples of time series from packages fma, datasets and ex-
psmooth, showing different behaviors.

interested in modeling and predicting the behavior of extreme (often
maximum) values of the time series (e.g. for security reasons).

• Consider ways of dealing with “short” time series. Nonparametric
and semi-parametric techniques constitute recent areas of research
helped by the increasing possibilities of computers to give answers
in situations where classical methods cannot be applied.

• Develop procedures for multivariate time series (that appear, for ex-
ample, in climatology or meteorology, where the phenomena under
study are very complex and several variables and several scales are
sometimes involved), where less research has been developed.

• Develop adequate procedures for time series recorded at not equally
spaced points.

After these general ideas on several important questions that arise linked
to time series, basic concepts in time series analysis will be remembered
in Section 2. Exponential smoothing methods will be briefly explained in
Section 3 and resampling methods in time series will appear in Section 4.
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Finally a computational procedure for prediction and also to detect and to
impute missing data in time series will be explained in Section 5 and some
comparative studies will be done in Section 6. Final Comments and the
References will conclude this work.

2. Basic concepts in time series analysis

A time series is a set of observations {yt1 , yt2 , . . . , ytN } each one recorded at
a specific time t1, t2, . . . , tN . A time series is said to be discrete (the case
we are going to consider here) if the set T0 of times at which observations
are made is a discrete set. Usually the records are done at equally spaced
times and the time series is then represented by

yt, t ∈ T0 = {1, 2, . . . , N} or T0 = N or T0 = Z.

If the observations are made continuously in time, the time series is said to
be continuous.

The analysis of data that have been observed at different points in time
leads to new and unique problems in statistical modeling and inference. In-
deed, most standard statistical techniques assume that the available data
can be regarded, at least approximately, as an independent random sam-
ple from a population of interest. This is a critical assumption for the
construction of standard hypothesis tests and confidence intervals. One dis-
tinguishing feature in time series is that the records are usually dependent.
Dependence between successive observations in a time series is referred to
as “autocorrelation”. Time series analysis deals with methods specially de-
signed for autocorrelated data.

The main objectives in a time series analysis, see Chatfield (2004) for a
complete description, are: description, explanation, prediction and control.

• Description refers to the first step in the analysis. It begins by looking
at the data and involves a variety of graphical displays. Graphical
representation of a time series allows to look for some patterns that the
time series exhibits, such as upward or downward movement (trend) or
a pattern that repeats (seasonal variation). The calculation of simple
descriptive measures of the main properties is another important step.

• Explanation intends to understand and interpret the mechanisms that
generated the data. To develop mathematical models that provide
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plausible descriptions for sample data is one of the primary objectives
of a time series analysis. “Different purposes of the analysis may also

dictate the use of different models. For example, a model that provides

a good fitting and admits nice interpretation is not necessarily good for

forecasting”, Bickel et al. (2003).

• Prediction deals with the extrapolation for the future. These extrap-
olations are often used to assess the risk of future adverse events or
to justify changing of policies, for example.

• Control is an important objective mainly, for example, when the time
series is measuring the “quality” of manufacturing processes.

A time series is a realization of a stochastic process {Yt, t ∈ T } defined
on a probability space (Ω,A,P) and with values in (Rn,B(Rn)). If n = 1
it is a univariate stochastic process, if n > 1 it is a multivariate stochastic
process.

A fundamental task is to unveil the probabilistic law that governs the
observed time series such that we can understand the underlying dynam-
ics. Many stochastic processes have been developed in order to explain that
underlying dynamics. Let us refer to some examples: White noise, Mov-
ing Averages, Random Walk, Autoregressive Processes, ARMA processes,
ARIMA processes, are perhaps the most well known.

A time series can be thought as a combination of some components:
trend (T ), the long term direction of the series; the seasonal component, (S)
that is a pattern that repeats with a known periodicity; the cycle (C) is a
pattern that repeats with some regularity but with unknown and changing
periodicity and the error (ǫ) that is the unpredictable component of the
series. Those components can be combined in several ways, giving different
models, for example:

• A purely additive model, that can be expressed as:

yt = Tt + St + Ct + ǫt.

• A purely multiplivative model, that can be expressed as:

yt = Tt × St × Ct × ǫt.

• A mixed model, that can be, for example:

yt = (Tt + St)× Ct + ǫt.
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Another point to be careful with is that most of the probability theory of
time series is concerned with stationary time series and for this reason many
procedures require to turn a non-stationary series to a stationary one.

3. Exponential smoothing methods

Forecasting future values of a time series is one of the main objectives in the
analysis. Forecasting methods have been developed based on well known
models: AR, ARMA, ARIMA, SARIMA, etc.

In the decade of 1950 another class of forecasting methods appeared.
These methods are based on the concept of exponential smoothing, i.e.,
methods having the property that forecasts are weighted combinations of
past observations, with recent observations given relatively more weight
than older observations. The name “exponential smoothing” reflects the
fact that the weights decrease exponentially as the observations get older.

Exponential smoothing (EXPOS) refers then to a set of methods that,
in a versatile way, can be used to model and to obtain forecasts.

The best known exponential smoothing methods, Hyndman et al. (2008),
are:

• Simple exponential smoothing — Suppose we have observed data up
to and including time t − 1, and we wish to forecast the next value
of our time series, ŷt. The method of simple exponential smoothing,
due to Brown (1959) takes the forecast for the previous period and
adjusts it using the forecast error. So, with α a constant between 0
and 1, the forecast for the next period is

ŷt+1 = ŷt + α(yt − ŷt) ⇐⇒ ŷt+1 = αyt + (1− α)ŷt.

By developing the relation above it is easy to see that ŷt+1 represents
a weighted moving average of all past observations with the weights
decreasing exponentially.

• Holt’s linear trend — Holt (1957) extended the simple exponential
smoothing procedure to linear exponential smoothing to allow fore-
casting of data with trends. The forecast for this method is found
using two smoothing constants, α and β (with values between 0 and
1) and three equations:
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– Level lt = αyt + (1− α)(lt−1 + bt−1);

– Growth bt = β(lt − lt−1) + (1− β)bt−1);

– Forecast ŷt+h|t = lt + bth.

Here lt denotes an estimate of the level of the series at time t and bt de-
notes an estimate of the slope (growth) of the series at time t. This pro-
cedure needs the parameters initialization and estimation, see Hyndman et

al. (2008) for suggestions.

• Holt-Winters Trend and Seasonality Method — Holt (1957) proposed
a method for seasonal data. Later, Winters (1960) improved it. The
method is based on three smoothing equations for level, trend and
seasonality. For additive seasonality the equations are:

– Level lt = α(yt − st−m) + (1− α)(lt−1 + bt−1);

– Growth bt = β(lt − lt−1) + (1− β)bt−1);

– Seasonal st = γ(yt − lt−1 − bt−1) + (1− γ)st−m);

– Forecast ŷt+h|t = lt + bth+ s
t−m+h

+
m
;

h+m = [(h − 1)modm] + 1 and parameters (α, β, γ) are usually restricted to
lie between 0 and 1.

Gardner and Mackenzie (1985) proposed a modification of Holt’s lin-
ear and Holt-Winters to allow the “damping” of trends, i.e., the growth
is dampened by a factor of φ for each additional future time period. For
example, in Holt’s linear, the level will become

lt = αyt + (1− α)(lt−1 + φbt−1).

Pegel’s (1969) classified exponential smoothing methods regarding the trend
and seasonal pattern that a series reveals as: none, additive (linear) or multi-
plicative (nonlinear). Since then, many researchers such as Gardner (1985),
Hyndman et al. (2002), Taylor (2003) have investigated and developed the
EXPOS models. Table 1 resumes the fifteen possibilities of exponential
smoothing (ignoring the error component).

For example (N,N) stands for the simple exponential smoothing and
(A,N) stands for Holts linear method. Hyndman et al. (2008) provided
a state space formulation for all models in the classification of Table 1.
For each method in the framework, additive error and multiplicative error
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Table 1. The exponential smoothing models.

Seasonal Component
Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

versions are considered. The state space model usually consists of two sets
of equations: the observation equation (1) and the state equation (2),

(1) yt = w′xt−1 + εt,

(2) xt = Fxt−1 + gεt,

with t = 1, 2, . . . , where yt is the observation in time t, xt is a “state vector”
containing unobserved components (level, trend and seasonality), {εt} is a
white noise series and F , g and w are coefficients. The first equation (1)
relates the observable time series value yt to a random k-vector xt−1 of
unobservable components from the previous period. w is a fixed k-vector.
F is a fixed k × k matrix and g is a k-vector of smoothing parameters. For
more details see Hyndman et al. (2008). The estimates of the exponential
smoothing parameters are obtained by minimizing the mean squared error
(MSE) of the one-step-ahead forecasts errors over the fitted period. The
model selection is made using the Akaike’s criterion (AIC). This model
selection criterion is preferable when compared to other criteria because
of the parsimonious model penalty, see Hyndman et al. (2002) for more
details.

4. Resampling methods in time series

Among resampling techniques, bootstrap is perhaps the most popular one.
It is a computational method for estimating the distribution of an estimator



Computational methods in time series 129

or test statistic by resampling from the data. Under conditions that hold
in a wide variety of applications, the bootstrap provides approximations to
distributions of statistics, coverage probabilities of confidence intervals and
accurate rejection probabilities of tests. The procedure was devised for an
i.i.d. situation and it usually fails for dependent observations.

In context of stationary time series two different bootstrap methods
have been proposed. Perhaps the best-known for time-series data is the
block bootstrap. It consists of dividing the data into blocks of observations
and sampling the blocks randomly with replacement, as in the independent
case. The blocks may be non-overlapping, Hall (1985) and Carlstein (1986)
or overlapping, Hall (1985), Knsch (1989) and Politis and Romano (1992).
Afterwards the resampled blocks are joined in order to reconstruct the series.

However, if the time series process is driven from i.i.d. innovations an-
other way of resampling can be considered. The classical bootstrap derived
for i.i.d. samples can easily be extended to the dependent case.

Another procedure, the sieve bootstrap, was proposed by Bühlmann
(1997) for dependent observations and extended by Alonso et al. (2002,
2003) for constructing prediction intervals in stationary time series. The
scheme of the sieve approach is the following:

Step 1. Fit an AR(p) using the AIC criterion;

Step 2. Obtain the AR residuals;

For B replicates

Step 3. Resample the centered residuals;

Step 4. Obtain a new series by recursion using the resampled series and
the autoregressive coefficients from Step 1;

Step 5. Fit an AR(p) to the new series;

Step 6. Obtain the forecasts using the previous model.

In previous works, Cordeiro and Neves (2006, 2007, 2008) studied and ana-
lyzed the possibility of joining EXPOS methods and the bootstrap method-
ology. From those studies the idea behind the sieve bootstrap, Bühlmann
(1997), suggested the connection of those two procedures. In a few words,
the sieve bootstrap considers first an autoregressive process that is fitted to a
stationary time series. Considering a model-based approach, which resam-
ples from approximately i.i.d. residuals, the classical bootstrap method-
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ology was applied to the centered residuals. The bootstrap proposed by
Bühlmann (1997) was extended for obtaining prediction intervals in sta-
tionary time series, Alonso et al. (2002, 2003). Following Bühlmann (1997)
and Lahiri (2003), validity and accuracy of IID-innovation bootstrap is well
studied.

5. Computational procedure for prediction and imputation

A first computational algorithm was constructed using four models for fit-
ting to the time series: single exponential smoothing, Holts linear and Holt-
Winters with additive and multiplicative seasonality. Nowadays it considers
thirty exponential smoothing methods and it consists of an automatic pro-
cedure in language. This procedure was named Boot.EXPOS. The idea
is to select the most adequate EXPOS model by using the AIC criterion
and obtain the residuals. The error component is isolated and investigated
regarding its stationarity using the Augmented Dickey-Fuller test. If it is
not compatible with this hypothesis, data transformation is required. If
there is some stationarity evidence, the residual sequence is filtered by an
autoregressive model, autoregressive coefficients are estimated and innova-
tions are obtained. In the context of AR models the bootstrap can be
conducted by resampling the centered residuals and then generating a data
set, using the estimated coefficients and the resampled residuals. The EX-
POS fitted values and the reconstructed series are used to obtain a sample
path of the data. Forecasts are obtained using the initial EXPOS model.
The bootstrap process is repeated B times and information is kept into
a matrix. An “optimal” point forecast is obtained by taking the average
of each column. The procedure also includes testing for stationarity and
Box-Cox transformations. The performance of our procedure was evaluated
through the forecasts obtained for a given period in a very large set of time
series.

5.1. A sketck of the algorithm

For a given time series {y1, . . . , yn} select the “best” EXPOS model (Table
1) using the AIC criterion. Any good model should yield residuals that
do not show a significant pattern. It is rare to discuss white noise in this
context because there is frequently some pattern left in the residuals, see
DeLurgio (1998). In order to model such left-over patterns and in case of
stationarity, an autoregressive model is used to filter the EXPOS residuals



Computational methods in time series 131

series. Thus, in order to apply the residual-based bootstrap discussed in
Section 4, a stationary series is required. The algorithm that joins the
EXPOS methods with the bootstrap approach is summarized as follows:

Step 0. Select an EXPOS model by AIC criterion, θ0 = (α, β, γ, φ),
ŷ = {ŷ1, . . . , ŷn} and the residuals {r1, . . . , rn};

Boot.EXPOS

Step 1. Fit an AR(p) to the residual sequence using the AIC criterion;

Step 2. Obtain the AR residuals;

For B replicates

Step 3. Resample the centered residuals;

Step 4. Obtain a new series by recursion using the resampld series and the
autoregressive coefficients from Step 1;

Step 5. Join the fitted values ŷ (Step 0) to the previous series;

Step 6. Forecast the initial series using the selected model and θ0 esti-
mated in Step 0.

Statistical tests, transformations and differentiation are prepared for anal-
ysis of stationarity of the random part before the AR ajustment is done
(Step 1 of Boot.EXPOS). All the intensive computational work is per-
formed in software. Some packages: car, forecast, tseries are used.
New functions in environment were constructed.

5.2. Measuring Forecast Errors

Large forecasting errors occur if the random component is very large or
the forecasting technique is not capable of accurately predicting the trend,
seasonal or cyclic components. The forecast performance is evaluated using
some accuracy measures. For each value yt of the variable of interest in
time period t, the forecast error for a particular forecast ŷt is et = yt − ŷt.
Several measures can be considered:
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Table 2. The Accuracy measures.

Acronyms Definition Formula

RMSE Root Mean Squared Error
√

mean((yt − ŷt)2)
MAE Mean Absolute Error mean(|yt − ŷt|)

MAPE Mean Absolute Percentage Error mean(100
∣∣∣ yt−ŷt

yt

∣∣∣)
sMAPE Symmetric Mean Absolute P.E. mean(200 |yt−ŷt|

yt+ŷt
)

6. Comparative study

In this Section, the forecasting effectiveness of the proposed procedure is
evaluated. The Boot.EXPOS is used to produce forecasts on some well-
known data sets and its performance is compared with other forecasting
methods.

Some functions already existing in environment, for example for the
exponential smoothing selection ets() are used. The selection is made using
the AIC criterion and during the process there is no user intervention, that
is, it runs in an automatic way. For more details see Hyndman and
Khandakar(2008).

6.1. In forecasting

All time series are separated into two parts: the fitting set and the vali-
dation set. The fitting set {y1, . . . , yn−h} is used to find the appropriate
EXPOS model and the exponential smoothing parameters estimates. The
validation set {yn−h+1, . . . , yn} is used to evaluate the forecasting capacity
using some accuracy measures. The forecasts are computed for a hold-out
period ŷn(1), . . . , ŷn(h) and compared with the true values (the validation
set) using criteria given in Table 2.

The M3 competition is a large set of 3003 series (Table 3) that is com-
monly used for evaluation the performance of a forecasting procedure. A
different number of forecasts, depending on the categories, are requested: 6
for yearly; 8 for quarterly and ”other”; 18 for monthly.

Makridakis and Hibon (2000) gives the 24 forecasting methods used
in the M3 competition and the best 6 methods were: Naive2, Box-Jenkins
automatic, ForecastPro, THETA, RBH and ForecastX.



Computational methods in time series 133

Table 3. The M3 competition time series.

Type of times series data

Period Demographic Finance Industry Macro Micro OTHER Total

Monthly 111 145 334 312 474 52 1428

OTHER 0 29 0 0 4 141 174

Quarterly 57 76 83 336 204 0 756

Yearly 245 58 102 83 146 11 645

Total 413 308 519 731 828 204 3003

Recently, Hyndman (2008) included in the function ets(), that chooses
the model (among those fifteen showed before, with additive and multi-
plicative errors for each model) that better fits the data and that makes
forecasts. Boot.EXPOS procedure was then extended considering all the
fifteen exponential smoothing models presented before, with additive and
multiplicative errors for each model. For illustration see Figure 2 where the
Symmetric Mean Absolute Percentage Error (sMAPE) is plotted for those
best six methods and Boot.EXPOS (in yellow) for the M3 competition time
series.
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Figure 2. Boot.EXPOS with the selection among (a) 4 EXPOS methods, (b) all
the EXPOS methods.

It is visible the progress of the Boot.EXPOS. In Figure 2 (a) the EXPOS
selection was among the simple exponential smoothing, the Holt’s linear
and Holt-Winters, with additive and multiplicative seasonal component
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(Cordeiro and Neves (2009)). Recently, Figure 2 (b), the EXPOS selec-
tion was augmented by incorporating more models and the Boot.EXPOS
revealed improvement in terms of forecast accuracy.

For time series in Figure 1, forecasts using the ets and the Boot.EXPOS
are obtained and the accuracy measures are presented in Table 4. Once
again the Boot.EXPOS showed a better performance in forecasting.

Table 4. Accuracy measures for time series in Figure 1.

Accuracy measures

Time series n-h s h ets function RMSE MAE MAPE

elec 464 12 12 (M,Ad,M) ets 348.87 305.88 2.19
Boot.EXPOS 333.90 300.85 2.17

UKDriverDeaths 180 12 12 (M,N,A) ets 205.63 198.49 14.68
Boot.EXPOS 84.93 67.79 4.88

gas 464 12 12 (M,Md,M) ets 2773.72 2097.73 4.22
Boot.EXPOS 2354.81 1929.19 3.88

uselec 130 12 12 (M,N,M) ets 5.68 4.35 1.72
Boot.EXPOS 4.03 3.04 1.20

ukcars 105 4 8 (A,N,A) ets 19.46 16.05 3.95
Boot.EXPOS 15.58 11.56 2.88

usgdp 229 4 8 (A,Ad,N) ets 59.08 43.12 0.38
Boot.EXPOS 38.70 24.98 0.22

6.2. Forecast Intervals

Let Fh be the empirical distribution function of the {ŷ∗bh, b = 1, . . . , B}. The
(1− α)× 100% confidence intervals are given by

[F−1
h

(α/2), F−1
h

(1− α/2)].

For a 95% confidence interval and B = 1000 replications, the percentiles
are F−1

h (0.025) = ŷ∗
(25)

bh , F−1
h (0.925) = ŷ∗

(975)

bh . So in what concerns forecast
intervals, they are obtained with the percentile bootstrap method with 1000
replicas. For the time series in Figure 1 the forecast intervals obtained are
plotted in Figure 3.

As it can be seen the forecasting intervals using the proposed procedure
are narrower than those obtained with the ets.

6.3. Missing data imputation

Another way of Boot.EXPOS application is in time series with missing data.
So this procedure was extended to deal with non-observable data: it detects,
estimates and replaces. It is named NABoot.EXPOS. How does it work?
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Figure 3. Forecast intervals for the time series in Figure 1.

Step 1. It starts by detecting the first missing observation;

Step 2. If the ith observation is missing (and also for the consecutive ob-
servations) the Boot.EXPOS will estimate (predict) the ith obser-
vation (and the following);

Step 3. The approach generates one or more forecasts to impute the miss-
ing value in i position and following missing values;

Step 4. Detect the next missing observation(s). If TRUE go to Step 2;

Step 5. The procedure finishes when the time series is complete.

In order to compare the performance of our procedure, we selected two
well known functions devised for inputing missing values. We chose
na.interp(), that uses linear interpolation and amelia(), that uses the boot-
strap with the EM algorithm. Figure 4 shows a complete time series (a)
and the same times series after being randomly removed some observations
(b).

The missing data were estimated using our method and the two meth-
ods, available in , just mentioned. The imputed values can be observed
in Figure 5.
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(b) Time series elec with missing data.

Figure 4. (a) The complete data and (b) the 24 (5%) missing observations.
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Figure 5. The na.interp, amelia and NABoot.EXPOS imputation.

Table 5 shows the correspondent accuracy measures.

Table 5. Figure 5 accuracy measures.

Funes RMSE MAE MAPE

na.interp 286.34 57.73 0.62
amelia 247.14 47.25 0.50
NABoot.EXPOS 76.32 13.06 0.13
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7. Closing comments

In forecasting the Boot.EXPOS has revealed a good procedure for obtain-
ing forecasts. So the “optimal” combination of EXPOS methods and boot-
strap resampling can provide more accurate forecasts. As a consequence it
also produces narrower intervals when compared to the forecasting intervals
achieved through the exponential smoothing models.

In missing data, an initial interpretation of the results suggests that
using NABoot.EXPOS to estimate missing data can be a good option. Also
the “optimal” combination of EXPOS methods and bootstrap resampling
seems to provide here more accurate imputed values than the two other
considered methods.
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