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Abstract

Our research is centred on the stochastic structure of matched open
populations, subjected to periodical reclassifications. These popula-
tions are divided into sub-populations. In our application we consid-
ered two populations of customers of a bank: with and without account
manager. Two or more of such population are matched when there is
a 1-1 correspondence between their sub-populations and the elements
of one of them can go to another, if and only if the same occurs with
elements from the corresponding sub-populations of the other. So we
have inputs and outputs of elements in the population and along with
several sub-populations in which the elements can be placed. It is thus
natural to use Markov chains to model these populations.
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Besides this study connected with Markov chains we show how to
carry out Analysis of Variance – like analysis of entries and departures
to and from de populations of customers. Our purpose is to study the
flows in and out of customers in classes for the two populations and to
make research on the influence of the factors year, class and region. We
used the Likelihood ratio tests for the hypotheses formulated on the
basis of these factors. In our work we verified that major hypotheses
were all rejected. This raises the question of what are the effects and
interactions truly relevant. Looking for an answer to this problem,
we present the first partition to a change in the log Likelihood. This
partition is very similar to the analysis of variance for the crossing
of the factors that allowed us to use algebraic established results, see
Fonseca et al. (2003, 2006), for models with balanced cross.

Keywords: populations with periodic reclassification, likelihood ratio
tests, Markov chains, isomorphism.

2010 Mathematics Subject Classification: 60J20, 62P05.

1. Inputs and outputs of customers in classes

1.1. Introduction

We will start with the separate analysis of flows to customers with and
without account manager. So, we consider that:

nijk is the number of customers at the beginning of the year i, which
belong to the class j and are located in the region k;

eijk is the number of customers who come in year i in class j and is
based in the region k;

sijk is the number of customers who drop out in year i to class j being
based in the region k;

The probability of entry and exit may be estimated by

{

pijk =
eijk
nijk

,

p∗ijk =
sijk
nijk

.

In what follows, we study the action of factors A – Year, C – Class and R
– region.

For each of these factors combination we can test the hypothesis that
there is no action of such factors. For example H0({A,C}) is the hypoth-
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esis that the year and the class do not influence the flow. These hypothe-
ses are distinct from those who consider the analysis of variance in effect
H0({A,C}) would break down in cases of absence of the effects of factors
A and C and the absence of interactions in which these factors participate.
Further, consider a partition of the variation of the logarithm of the log-
likelihood, similar to the analysis of variance. In this approach the parcels
on which decomposes the variation correspond to effects and interactions.
Note that portions of this partition correspond to the whole lattice of subsets
of {A,C,R}:

Figure 1. ”Screening” of all the factors in study and their interaction.

Such a lattice is the underlying analysis of variance for balanced designs
with three factors interactions, see Mexia (1988). In such models one takes
the same number of observations for all combinations of factor levels.

We consider the pairing of the populations of customers with and with-
out account manager for a comparative study, and we use Likelihood Ratio
Tests.

2. Construction testing

The Likelihood Ratio Test is one of the most used techniques for testing com-
posite hypotheses. Let (x1, . . . , xn) represent a sample from a population
with density function or probability function f(x; θ), depending on k pa-
rameters θ1, θ2, . . . , θk. Denote by Ω the set of all values θ = (θ1, θ2, . . . , θk).
Let H0 be the hypothesis which imposes certain restrictions on the values θ,
determining a subset of Ω, say ω, being the null and alternative hypotheses
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written as follows:

H0 : θ ∈ ω versus H1 : θ ∈ ω1, with ω1 = Ω− ω, θ /∈ ω.

The likelihood function for a given sample (x1, . . . , xn) is given by

L(θ) =

n
∏

i=1

f(xi; θ), θ ∈ Ω.

Consider LΩ as the supreme of L(θ) when θ ∈ Ω. Similarly Lω shall be the
supreme L when θ ∈ ω, and λ = Lω

LΩ
is the likelihood ratio. Note that λ ≤ 1,

since Lω never exceeds LΩ. Thus when λ is sufficiently close to 1 we are led
to not reject H0. To perform the tests, we use Likelihood Ratio (see Mood
et al., 1963) Wilks’s theorem:

Theorem 1 (Wilks’s theorem). Suppose we wanted to test:

H0 : θ1 = θ01, . . . , θr = θ0r , θ
0
r+1, . . . , θ

0
k

against all alternatives using a sample (x1, . . . , xn) with density or probabil-

ity function f(x, θ).
When H0 is true, (verifying regularity conditions) the distribution of

−2 log λ converges, when n → ∞, for the chi-square central with k − r
degrees of freedom. Although this statement the number g of degrees of

freedom is the number (k− r) of parameters not specified H0, generally with

g = dim(Ω) − dim(ω) degrees of freedom. For the unilateral right test the

critical value for the α level is the quantile χg,1−α of distribution χ2
g for the

probability 1− α.

3. The study case

Let us now see how to perform the Likelihood Ratio Test for the hypotheses
H0({A}) a H0({A,C,R}) outlined above. The data that we consider relate
to the years 2005, 2006 and 2007. Customers are assigned to classes set out
above and are located in 33 regions. We consider separately:

• Input from customers with account manager;

• Departure of customers with account manager;
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• Input from customers without account manager;

• Departure of customers without account manager.

To avoid duplication we have assumed the construction of tests to work with
random variables with binomial distributions with parameters nijk and qijk,
taking values xijk.

The likelihood is

LΩ =
∏

i

∏

j

∏

k

(

nijk

xijk

)

q
xijk

ijk (1− qijk)
nijk−xijk

with logarithm

lΩ = k +
∑

i

∑

j

∑

k

(xijk log qijk + (nijk − xijk) log(1− qijk))

being

k =
∑

i

∑

j

∑

k

log

(

nijk

xijk

)

.

Since δlΩ
δqijk

=
xijk

qijk
−

nijk−xijk

1−qijk
, we obtain the maximum likelihood estimators

q̂ijk =
xijk

nijk
, being

l̂Ω = k +
∑

i

∑

j

∑

k

(

xijk log
xijk
nijk

+ (nijk − xijk) log
nijk − xijk

nijk

)

.

On the other hand, we have:

qij. =
1

33

∑
33

k=1
qijk nij. =

∑
33

k=1
nijk xij. =

∑
33

k=1
xijk

qi.k =
1

4

∑
4

j=1
qijk ni.k =

∑
4

j=1
nijk xi.k =

∑
4

j=1
xijk

q.jk =
1

3

∑
3

i=1
qijk n.jk =

∑
3

i=1
nijk x.jk =

∑
3

i=1
xijk

qi.. =
1

4×33

∑
4

j=1

∑
33

k=1
qijk ni.. =

∑
4

j=1

∑
33

k=1
nijk xi.. =

∑
4

j=1

∑
33

k=1
xijk

q.j. =
1

3×33

∑
3

i=1

∑
33

k=1
qijk n.j. =

∑
3

i=1

∑
33

k=1
nijk x.j. =

∑
3

i=1

∑
33

k=1
xijk

q..k =
1

3×4

∑
3

i=1

∑
4

j=1
qijk n..k =

∑
3

i=1

∑
4

j=1
nijk x..k =

∑
3

i=1

∑
4

j=1
xijk

q... =
1

3×4×33

∑
3

i=1

∑
4

j=1

∑
33

k=1
qijk n... =

∑
3

i=1

∑
4

j=1

∑
33

k=1
nijk x...=

∑
3

i=1

∑
4

j=1

∑
33

k=1
xijk.
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Our hypotheses that can be written as

H0(A,C,R) : qijk = q...

H0(C,R) : qijk = qi..

H0(A,R) : qijk = q.j.

H0(A,C) : qijk = q..k

H0(R) : qijk = qij.

H0(C) : qijk = qi.k

H0(A) : qijk = q.jk.

Given the reproducibility of the binomial distribution, when the various
hypotheses are verified, there are the log-likelihoods, can be written:

l{A,C,R} = k + x... log q...(n... − x...) log(1− q...)

l{C,R} = k +
∑

i(xi.. log qi.. + (ni.. − xi..) log(1− qi..))

l{A,R} = k +
∑

j(x.j. log q.j. + (n.j. − x.j.) log(1− q.j.))

l{A,C} = k +
∑

k(x..k log q..k + (n..k − x..k) log(1− q..k))

l{R} = k +
∑

i

∑

j(xij. log qij. + (nij. − xij.) log(1− qij.))

l{C} = k +
∑

i

∑

k(xi.k log qi.k + (ni.k − xi.k) log(1− qi.k))

l{A} = k +
∑

j

∑

k(x.jk log q.jk + (n.jk − x.jk) log(1− q.jk))

with maximum

l̂{A,C,R} = k + x... log
x...

n...
+ (n... − x...) + log n...−x...

n...

l̂{C,R} = k +
∑

i xi.. log
xi..

ni..
+ (ni.. − xi..) log

ni..−xi..

ni..

l̂{A,R} = k +
∑

j x.j. log
x.j.

n.j.
+ (n.j. − x.j.) log

n.j.−x.j.

n.j.

l̂{A,C} = k +
∑

k x..k log
x..k

n..k
+ (n..k − x..k) log

n..k−x..k

n..k

l̂{R} = k +
∑

i

∑

j xij. log
xij.

nij.
+ (nij. − xij.) log

nij.−xij.

nij.

l̂{C} = k +
∑

i

∑

k xi.k log
xi.k

ni.k
+ (ni.k − xi.k) log

ni.k−xi.k

ni.k

l̂{A} = k +
∑

j

∑

k(x.jk log
x.jk

n.jk
+ (n.jk − x.jk) log

n.jk−x.jk

n.jk
.

To build the corresponding Likelihood ratio tests, the degrees of freedom
(given by dim(Ω)) will be:
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g{A,C,R} = 3× 4× 33− 1 = 395

g{C,R} = 3× 4× 33− 3 = 393

g{A,R} = 3× 4× 33 − 4 = 392

g{A,C} = 3× 4× 33− 33 = 363

g{A} = 3× 4× 33− 4× 33 = 264

g{C} = 3× 4× 33− 3× 33 = 297

g{R} = 3× 4× 33− 3× 4 = 384.

3.1. Tests of hypotheses on input from customers with account

manager

In this case we have

l̂{Ω} = −346248, 001

l̂{A,C,R} = −358971, 182

l̂{C,R} = −358863, 179

l̂{A,R} = −349469, 660

l̂{R} = −348931, 459

l̂{A,C} = −357688, 330

l̂{C} = −357325, 653

l̂{A} = −347387, 557

and we obtained the test statistics presented in Table 1.

Table 1. Likelihood Ratio Tests on input from customers with account manager.

Factors Statistical test Degrees of Freedom Tabulated Chi-Square value

{A,C,R} 25446,3625 395 442,3406
{C,R} 25230,3560 393 440,2233
{A,R} 6443,3180 392 439,1646
{R} 5366,9176 384 430,6919

{A,C} 22880,6597 363 408,4271
{C} 22155,3047 297 338,1930
{A} 2279,1122 264 302,8983

Therefore all hypotheses are rejected to α = 5%.
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3.2. Testing hypotheses of the departure of classes from cus-

tomers with account manager

From the data, we obtained:

l̂{Ω} = −85661, 169

l̂{A,C,R} = −94250, 903

l̂{C,R} = −93453, 429

l̂{A,R} = −87465, 349

l̂{R} = −86281, 823

l̂{A,C} = −93966, 695

l̂{C} = −93026, 854

l̂{A} = −87111, 204

and we obtained the test statistics presented in Table 2.

Table 2. Likelihood Ratio Tests of the departure of classes from customers with
account manager.

Factors Statistical test Degrees of Freedom Tabulated Chi-Square value

{A,C,R} 17179,4680 395 442,3406
{C,R} 15584,5189 393 440,2233
{A,R} 3608,3605 392 439,1646
{R} 1241,3080 384 430,6919

{A,C} 16611,0521 363 408,4271
{C} 14731,3691 297 338,1930
{A} 2900,0698 264 302,8983

Therefore all hypotheses are rejected to α = 5%.

3.3. Tests of hypotheses on input from customers without ac-

count manager

From the data we obtained

l̂{Ω} = −777828, 669

l̂{A,C,R} = −792205, 794
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l̂{C,R} = −791286, 373

l̂{A,R} = −784228, 704

l̂{R} = −782195, 942

l̂{A,C} = −789259, 040

l̂{C} = −787948, 026

l̂{A} = −780549, 942

and we obtained the test statistics presented in Table 3.

Table 3. Likelihood Ratio Tests on input from customers without account manager.

Factors Statistical test Degrees of Freedom Tabulated Chi-Square value

{A,C,R} 28754,2491 395 442,3406
{C,R} 26915,4082 393 440,2233
{A,R} 12800,0692 392 439,1646
{R} 8734,5452 384 430,6919

{A,C} 22860,7418 363 408,4271
{C} 20238,7134 297 338,1930
{A} 5442,5460 264 302,8983

Therefore all hypotheses are rejected to α = 5%.

3.4. Testing hypotheses of the departure of classes from cus-

tomers without account manager

From the data we obtained

l̂{Ω} = −861900, 408

l̂{A,C,R} = −897576, 772

l̂{C,R} = −897381, 957

l̂{A,R} = −866675, 515

l̂{R} = −864720, 165

l̂{A,C} = −896267, 745

l̂{C} = −895738, 495

l̂{A} = −864414, 771

and we obtained the test statistics presented in Table 4.
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Table 4. Likelihood Ratio Tests of the departure of classes from customers without
account manager.

Factors Statistical test Degrees of Freedom Tabulated Chi-Square value

{A,C,R} 71352,7269 395 442,3406
{C,R} 70963,0982 393 440,2233
{A,R} 9550,2139 392 439,1646
{R} 5639,5127 384 430,6919

{A,C} 68734,6728 363 408,4271
{C} 67676,1729 297 338,1930
{A} 5028,7255 264 302,8983

Therefore all hypotheses are rejected to α = 5%.

4. Partition of the variation of log-likelihood

4.1. Algebraic treatment

As we observe from the Likelihood Ratio tests all hypotheses are rejected.
This conduces us to the conclusion that perhaps there is too much informa-
tion. We have the four cases:

• Input from customers with account manager;

• Departure of customers with account manager;

• Input from customers without account manager;

• Departure of customers without account manager.

And it is crucial to know what relevant effects and interactions there are.
We use the word relevant because, for now, we will present the theory that
arises at the level of descriptive statistics as it gives us the fraction of the
variation in log-likelihood attributable to each of the sets of factors. There
is a clear parallel between this technique and the partition of the sum of
squares for ANOVA with factors interaction.

When you have L factors with j1, . . . , jL levels we have n0 =
∏L

l=1 jl
possible treatments.

We then have an orthogonal partition, see Fonseca et al. (2003, 2006).

Rn0 = ⊞h∈Γ∇(h),
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where ⊞ indicates direct sum of orthogonal sub-spaces and Γ(h;hl = 0, 1;
l = 1, . . . , L).

In particular, ∇(0) will be the sub-space formed by vectors with equal
components. So, given a vector v whose components have average v., we
will have

ν − 1ν. =
∑

h∈Γ\{0}

s(h)

with s(h) denoting the square of the norm of the orthogonal projection
of v on ∇(h). Thus, s(h) will be proportional to the variation in the v
components attributable to the factor or factors and the index is:

ς(h) = {l : hl = 1}.

Being T (h) the vector components of the total v corresponding to combi-
nations of factor levels with ς(h) indexes we have, see Fonseca et al. (2003,
2006)

s(h) =
∑

0

(−1)()ς(h)−ς(k)) ‖T (k)‖2
∏

l /∈ς(h) jl
.

On the analysis of variance s(h) divided by d(h), the dimension of ∇(h),

will give us the ”mean square”: qm(h) = s(h)
d(h) , being, see Fonseca et al.

(2003, 2006), the dimensions given by d(h) =
∏

l∈ς(h)(jl − 1). One can then
calculate the mean squares:

qmr(h) =
qm(h)
∑

h/∈Γ

qm(h),

which will measure the relevance of the various sets of factors.

Let us now try to clarify the relationship between the approaches of the
Likelihood Ratio Test and the Partition of the variation of the logarithm
of the likelihood. Represent by ζc the complement of ζ. For example, to
ζ = {A,R}, we will have ζc. Now we can show that

ω(ζ) = (⊞∇(ζ ′))⊥, ζ ′ ⊆ ζc, where ⊥ shows the orthogonal complement.

The hypotheses for the Likelihood Ratio tests were of the form:

H0(ζ) : q ∈ ω(ζ).
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Then we have the hypotheses:

H0
0 (ζ) : q ∈ ∇(ζ)⊥.

5. Applications

The results of this technique can be presented in a summary table similar to
the analysis of variance. The effects of factors are indicated by their symbols
in our application, namely: A, C and R and their interactions, AxC, AXR,
CXR and AxCxR.

5.1. Input of customer with account manager

We have the summary table

Table 5. Summary of entries in the classes of customers with account manager.

Source of Variation Sum of Squares Dimension Mean square Relative mean
”s(h)” ”qm” square ”qmr”

{A} 216,006 2 108,003 0,016
{C} 19003,044 3 6334,348 0,946

{A,C} 860,394 6 143,399 0,021
{R} 2565,703 32 80,178 0,012

{A,R} 509,349 64 7,959 0,001
{C,R} 1598,503 96 16,651 0,002

{A,C,R} 693,363 192 3,611 0,001

This results in the status table of the dominant class factor, and it was
graphically:

Figure 2. Adjustment of the mean square relative to the input of customers with

account manager.
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5.2. Outputs from customers with account manager

We have the summary table

Table 6. Summary table of departures of customers with account manager from
classes.

Source of Sum of Squares Dimension Mean square Relative mean square
Variation ”s(h)” ”qm” ”qmr”

{A} 1594,949 2 797,475 0,146
{C} 13571,108 3 4523,703 0,826

{A,C} 772,103 6 128,684 0,024
{R} 568,416 32 17,763 0,003

{A,R} 284,734 64 4,449 0,001
{C,R} 139,875 96 1,457 0,000

{A,C,R} 248,283 192 1,293 0,000

This results in the status table of the dominant class factor, and graphically
we have:

Figure 3. Adjustment of the mean square relative to the outputs from customers

with account manager.

5.3. Inputs from customers without account manager

We have the summary table
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Table 7. Summary table of incoming customers without account manager classes.

Source of Sum of Squares Dimension Mean square Relative mean square
Variation ”s(h)” ”qm” ”qmr”

{A} 1838,84 2 919,420 0,135
{C} 15954,18 3 5318,060 0,779

{A,C} 2226,68 6 371,114 0,054
{R} 5893,51 32 184,172 0,027

{A,R} 783,19 64 12,237 0,002
{C,R} 1464,02 96 15,250 0,002

{A,C,R} 593,83 192 3,093 0,000

This results in the status table of the dominant class factor. Graphically
we have:

Figure 4. Adjustment of the mean square relative to the input of customers

without account manager.

5.4. Outputs from customers without account manager

We have the summary Table 8.
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Table 8. Summary table of outputs from customers without account manager.

Source of Sum of Squares Dimension Mean square Relative mean square
Variation ”s(h)” ”qm” ”qmr”

{A} 389,629 2 194,814 0,009
{C} 61802,513 3 20600,838 0,958

{A,C} 3521,073 6 586,845 0,027
{R} 2618,054 32 81,814 0,004

{A,R} 668,871 64 10,451 0,000
{C,R} 1903,434 96 19,827 0,001

{A,C,R} 449,153 192 2,339 0,000

This results in the status table of the dominant class factor. Graphically
we have:

Figure 5. Adjustment of the mean square relative to the outputs of customers

without account manager.

5.5. Paired comparison of populations

Given the matching, we compare for the different classes, the probability of
abandonment. To lighten the writing we represent in each class by n1 and
n2 the numbers of customers with and without account manager and by
S1 and S2 the exit numbers and the probabilities of outputs. We want to
test whether the probability of outputs and of customers with and without
account manager are equal in each of the four classes. So, we then test the
hypothesis:

H0 : p1 = p2.
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Reasoning as above we obtain:

{

l̂Ω = k +
∑2

i=1(silog(
s1
n1
) + (n1 − s1)log(

ni−si
ni

)),

l̂ω = k + (s1 + s2)log(
s1+s2
n1+n2

) + (n1 + n2 − s1 − s2)log(
n1+n2−s1−s2

n1+n2
)

taking up the test statistic

V = −2(l̂ω − l̂Ω).

Given the Wilks theorem we can assume that when the hypothesis H0 is
true, V is distributed as a Chi-square central with r = dim(Ω)−dim(ω) = 1
degrees of freedom.

The results for the different classes are presented in Table 9.

Table 9. Likelihood Ratio Test for the outputs.

Class Statistical test Degrees of freedom Tabulated Chi-Square value

1 3498,26660 1 3,8415
2 2717,4450 1 3,8415
3 3311,7620 1 3,8415
4 6505,8440 1 3,8415

Therefore all hypotheses are rejected to α = 5%.
To complete the analysis we performed a partition of Change in Log-

arithm of Likelihood. Let us now consider the factors class (C) and the
account manager (E).

We obtained the following summary Table 10, showing the dominant
character of the factor account manager. Be allocated to an account man-
ager overrides the class in determining the degree of customer loyalty.

Table 10. Summary table of relevance of factors of class and with account manager
in the outputs.

Source of Sum of Squares Dimension Mean square Relative mean
Variation ”s(h)” ”qm” square ”qmr”

{C} 74037,441 3 24679,147 0,25
{E} 60796,535 1 60796,535 0,61

{C,E} 44763,208 3 14921,069 0,15
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6. Conclusion

We conclude that the dominant factor was either in class or in abandoned
entries. Using the pairing of costumers we noticed the existence of account
manager customer loyalty. This result is very interesting because it will
allow us to (i) work together globally to customers without having to disas-
semble the same for regions, (ii) admit the homogeneity of Markov chains:
the matrices of probabilities transition do not vary from year to year.
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[5] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimação de components de
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