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Abstract

Many data sets analyzed in human and social sciences have a mul-
tilevel or hierarchical structure. By hierarchy we mean that units of
a certain level (also referred micro units) are grouped into, or nested
within, higher level (or macro) units. In these cases, the units within
a cluster tend to be more different than units from other clusters,
i.e., they are correlated. Thus, unlike in the classical setting where
there exists a single source of variation between observational units,
the heterogeneity between clusters introduces an additional source of
variation and complicates the analysis.

Collecting data on Educational Research often does not follow the
principles of simple random sample, suspected by classical regression,
but rather a sample by nested clusters. Selected to students and also
the contextual units to which they belong such as classes, courses,
schools, neighborhoods or regions, and so forth.

Using classical regression bias is produced in the typical error of
measurement and an increased likelihood of committing errors of in-
ference. The hierarchical linear or multilevel models are most suitable
because they consider the hierarchical relationships and also provide
estimates on the contextual variability of regression coefficients.
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In practice, often the data structures are not hierarchical, are more
complex structures such as cross-classification (level 2 or macro). For
example, students (level 1 or micro) to attend different courses at a
school while in other schools there are students who attend the same
courses.

Two examples of application to academic achievement of students
are presented. First, a model of cross-classification of level 2 is used.
Second, a hierarchical model of two levels (students and schools) is
presented, taking into account the different areas of science - scientific-
humanistic courses and technology courses.

Keywords: hierarchical linear model, multilevel model, cross-classi-
fication models, academic achievement.

2010 Mathematics Subject Classification: 62–07, 62P25.

1. Introduction

The single-level analysis that ignore the multilevel (hierarchical) structure of
the data can provide misleading results. Hierarchical linear models (HLM),
or multilevel models, take the multilevel structure of educational data into
account, and they provide a conceptual and statistical mechanism for inves-
tigating and drawing conclusions regarding the influence of phenomena at
different levels of analysis.

These models can simultaneously examine effects of both individual and
group level variables on an individual level outcome. Moreover, the corre-
lated errors and nonzero ICC (intra-class correlation – is a basic measure
for the degree of dependency in clustered observations) inherent in grouped
data are appropriately incorporated in HLM, giving accurate standard er-
rors estimates and inferences.

HLM have originally been developed in educational and social research
where observations are often made on different levels simultaneously (such
as students, classes, schools, and so forth) (Richter, 2006) [10].

Hierarchical linear models (Bryk and Raudenbush, 1992 [2]; Snijders
and Bosker, 1999) [11], also known asmultilevel models (Goldstein, 1995) [3],
multilevel regression models (Hox, 2002) [4], or random coefficient models

(Kreft and de Leeuw, 1998) [5] are all forms of multi-level modeling and are,
essentially, equivalent to one another. We consider two-level hierarchical
data structures and follow the notation of Bryk and Raudenbush (1992) [2].
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In our work we have data in J groups or contexts (schools), and a different
number of individuals (students) nj in each group. The data do not have
to be necessarily balanced (it is not necessary that nj = nk to n 6= k).
On the student level (lowest) we have the dependent variable Yij and the
explanatory variable Xij , and on the school level we have the explanatory
variable Wj.

Thus, in the two-level hierarchical models, we can have separate level-1
regression equations at each of the level 2 units. The level-1 or within school
model can be represented as:

Yij = β0j + β1j Xij + eij ,

where Yij is the outcome for the ith student in the jth school; Xij is the
explanatory variable for the ith student in the jth school; β0j is the intercept
for the jth school; β1j is the slope for the jth school; and eij is the random
error to the ith student in the jth school from its school’s predicted line.
The subscripts for the β coefficients in this equation indicate that they can
differ for each school j.

Intercepts and slopes are modeled by explanatory variables in the level-2
or between school models as:

β0j = γ00 + γ01 Wj + u0j,

β1j = γ10 + γ11 Wj + u1j,

where γ00 is the estimated intercept when Wj is equal to zero; u0j is the
random error to the jth school from the average intercept; γ10 is the es-
timated slope when Wj is equal to zero; and u1j is the random error to
the jth school from the average slope. The γ01 and γ11 are the regression
coefficients associated with the effects of the explanatory’s school level on
the student level structural relationships. Substitution of these equations
(level-2 models) in level-1 model gives:

Yij = γ00 + γ10 Xij + γ01 Wj + γ11 Wj Xij + u0j + u1j Xij + eij .

X and W variables can be modeled in their original, untransformed metric
or centered (about respective grand means, or X about respective group
means) (Sullivan et al., 1999) [12].
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The specification of error terms at both the student (e) and school (u) levels
allows HLM’s to appropriately model the error in grouped data (i.e., non
zero ICC).

The HLM’s assumptions are extensions of the linear modeling restric-
tions required for single level OLS regression (Bryk and Raudenbush, 1992 [2];
Snijders and Bosker, 1999) [11]. The mathematical expressions of the as-
sumptions can be found, for example, in Sullivan et al. (1999) [12].

In practice, often the “multilevel data do not always follow a strictly
hierarchical structure (Raudenbush and Bryk, 2002) [9]”, are more complex
structures such as, cross-classified models – for instance, students to attend
different courses at a school while in other schools there are students who
attend the same courses (Raudenbush and Bryk, 2002) [9]. Therefore school
is not nested within the course and the course is not nested within school:
instead, we have cross-classified structure (Rasbash et al., 2004) [8].

A simple model in this context can be written as (we follow Rasbash et

al., 2004) [8]:
Yi(jk) = β0 + v0k + u0jk + ei(jk)

with

v0k ∼ N
(

0, σ2
v0

)

; u0jk ∼ N
(

0, σ2
u0

)

; ei(jk) ∼ N
(

0, σ2
e

)

,

where the academic achievement score Yi(jk) of the ith student from the
(jk)th course/school combination is modeled by the overall mean β0, to-
gether with a random error v0k due to school k, a random error u0jk due to
course j, and an individual-level random error ei(jk). In this model we have
students at level-1 and courses and schools are cross-classified at level-2.
For details, see Rasbash and Browne (2008) [7].

More detailed discussion of multilevel or HLM’s procedures can be found
in Bryk and Raudenbush (1992) [2], Goldstein (1995) [3], Kreft and de
Leeuw (1998) [5], Snijders and Bosker (1999) [11], Hox (2002) [4], and Rau-
denbush and Bryk (2002) [9].

2. Application, results and analysis

The data are withdrawn from a list of questions, applied to the 10th grade
high school students in 2004/2005 considering three subjects of the scientific
areas. In order to show that HLM are appropriate to identify relevant
factors of the students’ performance, we aim to identify if there are relevant
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differences on average students’ performance between schools and courses;
which explanatory variables at different levels affect the output variable and
how much variability we must have at each output level; and if the students’
distribution by school is random.

Based on Valente and Oliveira (2006, 2009) [15] [13] one cross-classified
model of level 2 (classes and schools), and two HLM’s of 2 level (students
and schools), taking into account the different areas of science – scientific-
humanistic courses and technological courses.

Throughout this work, we use the package MlwiN 2.23 [6], developed
and described by Rasbash et al. (2004) [8] and Browne (2004) [1]. More
detailed description of selected variables that are used in the construction of
the different intermediate models and final models can be found in Valente
and Oliveira (2007, 2009) [14] [13].

In analysis of HLM’s a preliminary study with the explanatory variables
is made, in order to verify both, contribution and significance, in future
models (Valente and Oliveira, 2007; 2009) [14] [13].

Table 1. Cross-Classified Models

Uncondicional Variance Components Variance Components

Model Model Model (with CURSO)
Parameters Estimate (s.e) Estimate (s.e) Estimate (s.e)
FIXED

Intercept 0.008 (0.027) -0.048(0.066) -0.563(0.086)∗∗∗

CURSO 0.732(0.085)∗∗∗

RANDOM

Level 2: Schools – Intercept 0.023(0.024) 0.042(0.025)∗

Level 2: Classes – Intercept 0.203(0.044)∗∗∗ 0.075(0.024)∗∗∗

Level 1: Students 0.976(0.037)∗∗∗ 0.756(0.030)∗∗∗ 0.755(0.029)∗∗∗

Deviance(MCMC) 3899.88 3546.14 3544.92
Number of valid data 1387 1387 1387
DIC (pD) 3901.89(2.01) 3614.63 (68.49) 3601.24 (56.32)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05

In Table 1 we have models of two levels where classes and schools are cross-
classified at level 2. In variance components model we can see that classes
are actually more important in predicting the academic achievement score
than schools. The schools only explains 0.023/(0.023 + 0.203 + 0.756) ·
100% = 2.34% of variation – the coefficient is not significant, while the
classes explain 0.203/(0.023 + 0.203 + 0.756) · 100% = 20.67%. The DIC
diagnostic shows that this model is an improvement with a reduction in
DIC value of over 280(3901.89 − 3614.24 = 287.26). This indicates that
within-school differences (between students) are far larger than between-
school differences (and even than between classes).
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Adding the explanatory variable CURSO (type of course: Science/ Human-
ities or Technology) has the effect of reducing the variability value between
classes around 63.05% (σ2

u0 change from 0.203 to 0.075) meanwhile the vari-
ability value between pupils is null. This variable introduces differences
between schools so that the coefficient is now significant although slightly
(σ2

v0 change from 0.023(0.024) to 0.042(0.025)).

In our last researches we found that the students of sciences and human-
ities perform better than students of technological courses (Tables 1 and 2),
therefore we decided to further study to obtain comparisons between courses
in different subjects areas and whys.

We choose to aggregate some explanatory variables in intermediate
models to test its significance while a group. First, the variance compo-
nents models are presented, i.e., without explanatory variables in Table 2.

Table 2. Cross-Classified Model – Random Intercept

Technological Scientific-humanistic

Courses Courses

Parameters Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.550(0.078)∗∗∗ 0.167(0.068)∗∗

RANDOM

Level 2: Schools – Intercept 0.019(0.024) 0.052(0.030)∗

Level 2: Classes – Intercept 0.076(0.041)∗ 0.071(0.030)∗∗

Level 1: Students 0.579(0.045)∗∗∗ 0.817(0.038)∗∗∗

Deviance(MCMC) 821.42 2708.86
Number of valid data 359 1028
DIC (pD) 840.18(18.75) 2748.35(39.49)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05

Technologic Courses: 0.579/0.674 = 85.9% is the proportion of variance
within classes; 0.076/0.674 = 11.3% is the proportion of variance among
classes within schools; and 0.019/0.674 = 2.8% is the proportion of variance
among schools, where 0.674 = (0.019+0.076+0.579).

Scientific-humanistic courses: 0.817/0.940 = 86.9% is the proportion of vari-
ance within classes; 0.052/0.940 = 7.6% is the proportion of variance among
classes within schools; and 0.052/0.940 = 5.5% is the proportion of variance
among schools, where 0.940 = (0.052+0.071+0.817).

The results for classes and schools are a quite low, compared to other
results of educational research – values between 0.05 and 0.20 are common
(Snijders & Bosker, 1999) [11]. This indicates that the grouping to schools
(classes) leads to a low similarity between the results of different students
in the same school (class), although within-school (within-class) differences
are far larger than between-school (between-class) differences.
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Estimated residuals, at any level, can be used to check model assumptions.
One such assumption is that the residuals at each level follow Normal distri-
butions. This assumption may be checked using a Normal probability plot,
in which the ranked residuals are plotted against corresponding points on a
Normal distribution curve. If the Normality assumption is valid, the points
on a Normal plot should lie approximately on a straight line (Rasbash et

al. 2004) [8], as we can see in Figure 1.

Figure 1. Plot of student (left), class (middle) and school (right) residuals

for cross-classified at level 2 model. Technological courses (top);

Scientific-humanistic courses (bottom).

The plots looks fairly linear, which suggests that the assumption of Nor-
mality is reasonable.

In Table 3, it seems there is no evident variability both between schools
as between classes (technologic and scientific-humanistic courses). These
variability’s are practically explained by this variable (CURSO) – some
coefficients are not significant anymore. The variability between classes is
explained in 81.6% (5.6%) and between schools is 47.4% worse (9.6% worse)
for technologic courses (scientific-humanistic courses).
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Table 3. Base – Cross-Classified Model

Technological Scientific-humanistic

Courses Courses

Parameters Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.325(0.117)∗∗∗ 0.332(0.152)∗

C TEC ASoc 0.296(0.215)
C TEC Desp -0.229(0.179)
C TEC Elec -0.535(0.169)∗∗∗

C TEC Inf -0.430(0.144)∗∗

C TEC Mark -0.258(0.352)
C TEC Mult -0.035(0.334)
C CHUM CSE -0.321(0.172)∗

C CHUM CSH -0.174(0.175)
C CHUM CT -0.137(0.159)
RANDOM

Level 2: Schools – Intercept 0.028(0.028) 0.057(0.034)∗

Level 2: Classes – Intercept 0.014(0.018) 0.067(0.028)∗∗

Level 1: Students 0.576(0.045)∗∗∗ 0.818(0.038)∗∗∗

Deviance(MCMC) 820.09 2708.53
Number of valid data 359 1028
DIC (pD) 836.55(16.46) 2748.86(40.32)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05
C TEC Adm and C CHUM AV are the reference categories for Technological Courses and SH-Courses,

respectively.

Figure 2.1. Caterpillar plot of level 2 residuals for Technologic courses. Classes

(top) and schools (bottom). Cross-classified model – random inter-

cepts (left) and Base cross-classified model (right).
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Figure 2.2. Caterpillar plot of level 2 residuals for Scientific-humanistic courses.

Classes (top) and schools (bottom). Cross-classified model – random

intercepts (left) and Base cross-classified model (right).

The diagnostic DIC value for models of both courses don’t suggests an
improvement. So, we choose to use two-level hierarchical linear models –
students and schools (tables 4 to 6) without interactions.

Looking at the Figures 2.1 and 2.2, we can see that the confidence in-
tervals around the residuals do not overlap zero for both classes and schools
– model of Table 2, and for both classes and schools – model of Table 3.

Also now, we have chosen to aggregate some exploratory variables in
intermediate models to test its significance while a group.

From Table 4, we can see that 0.063/0.672 = 9.4% is the proportion
of variance between schools and 0.609/0.672 = 90.6% is the proportion
of variance between students for Technological Courses, where 0.672 =
(0.063+0.609). We have a proportion of variance of 0.074/0.934 = 7.9%
and 0.860/0.934 = 92.1%, between schools and between students, respec-
tively, for SH-Courses.
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Table 4

Uncondicional Model Model – Random Intercept
Technological Scientific- Technological Scientific-

Courses humanistic Courses humanistic

Courses Courses

Parameters Estimate (s.e) Estimate (s.e) Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.534(0.043)∗∗∗ 0.197(0.030)∗∗∗ -0.536(0.072)∗∗∗ 0.164(0.064)∗∗

RANDOM

Level 2: Schools – Intercept 0.063(0.035)∗ 0.074(0.031)∗∗

Level 1: Students 0.664(0.050)∗∗∗ 0.994(0.042)∗∗∗ 0.609(0.048)∗∗∗ 0.860(0.039)∗∗∗

Deviance(MCMC) 873.85 2854.86 839.88 2759.93
Number of valid data 359 1028 359 1028
DIC (pD) 875.82 (1.98) 2858.86 (2.00) 852.84 (12.96) 2778.57 (18.64)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05

Table 5. Base Model

Technological Scientific-humanistic

Courses Courses

Parameters Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.301(0.114)∗∗ 0.314(0.112)∗∗

C TEC ASoc 0.269(0.204)
C TEC Desp -0.250(0.167)
C TEC Elec -0.564(0.160)∗∗∗

C TEC Inf -0.456(0.128)∗∗∗

C TEC Mark -0.285(0.349)
C TEC Mult -0.050(0.327)
C CHUM CSE -0.312(0.116)∗∗

C CHUM CSH -0.156(0.118)
C CHUM CT -0.124(0.106)
RANDOM

Level 2: Schools – Intercept 0.039(0.033) 0.075(0.032)∗∗

Level 1: Students 0.577(0.045)∗∗∗ 0.854(0.039)∗∗∗

Deviance(MCMC) 820.36 2753.87
Number of valid data 359 1028
DIC (pD) 835.90(15.54) 2775.49(21.62)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05
C TEC Adm and C CHUM AV are the reference categories for Technological Courses and SH-Courses,

respectively.

The base model (Table 5) is formed by categorical variable CURSO (the
course chosen by the student). This model explains 38.1% of the existing
variability between schools and 5.3% of the variability between students –
technological courses. The model doesn’t improve for scientific-humanistic
courses.

In Table 6.1, the model A deals with students characteristics. The
students with age-grade imbalance (D IDADE) have a tendency to score
poorly. Male students (SEXO) perform poorer than female students – SH
courses. The model contributes with 14.7% and 4.9% for the explanation
of the difference between schools and between students, respectively – SH
courses. This suggests that students are not distributed by schools in a
random way.
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Model B (Table 6.1) is formed by variables representing students’ attitudes.
This is a good example of the students’ practice. The coefficients of the
variables of the scientific-humanistic courses are statistically very significant
compared with the coefficients of technological courses.

Table 6.1. Results of two-level HLM – Models A and B

Model A Model B

Technological Scientific- Technological Scientific-

Courses humanistic Courses humanistic

Courses Courses

Parameters Estimate (s.e) Estimate (s.e) Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.155(0.119) 0.520(0.113)∗∗∗ -0.894(0.243)∗∗∗ -0.699(0.199)∗∗∗

C TEC ASoc 0.311(0.196) 0.269(0.207)
C TEC Desp -0.268(0.160)∗ -0.261(0.158)∗

C TEC Elec -0.569(0.167)∗∗∗ -0.565(0.157)∗∗∗

C TEC Inf -0.488(0.133)∗∗∗ -0.445(0.120)∗∗∗

C TEC Mark -0.272(0.350) -0.238(0.354)
C TEC Mult -0.108(0.318) -0.113(0.320)
C CHUM CSE -0.323(0.114)∗∗ -0.370(0.105)∗∗∗

C CHUM CSH -0.184(0.117) -0.168(0.107)
C CHUM CT -0.218(0.106)∗ -0.270(0.096)∗∗

SEXO 0.014(0.102) -0.066(0.059)
NEE -0.372(0.240) -0.318(0.210)
D IDADE -0.175(0.047)∗∗∗ -0.364(0.054)∗∗∗

A EMP 0.695(0.157)∗∗∗ 0.699 (0.107)∗∗∗

A PART 0.214(0.147) 0.773(0.090)∗∗∗

A DIST -0.211(0.143) -0.446(0.098)∗∗∗

A ASSID 0.223(0.174) 0.446(0.145)∗∗

AJU TPC -0.188(0.110)∗ -0.233(0.080)∗∗

RANDOM

Level 2: Schools – Intercept 0.037(0.032) 0.064(0.028)∗∗ 0.043(0.035) 0.055(0.025)∗

Level 1: Students 0.555(0.043)∗∗∗ 0.812(0.036)∗∗∗ 0.511(0.040)∗∗∗ 0.680(0.032)∗∗∗

Deviance(MCMC) 806.08 2701.66 763.78 2461.17
Number of valid data 359 1028 353 1004
DIC (pD) 824.50(18.42) 2725.90(24.24) 785.04(21.25) 2487.56(26.39)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05
C TEC Adm and C CHUM AV are the reference categories for Technological Courses and SH-Courses,

respectively.

Model C (Table 6.2) is composed of variables that show the attitudes and
expectations of the students and families towards the schools and the stud-
ies. It is quite significant and about 48% of the variability between schools
(SH courses) is explained by these variables and, more than 14% of the vari-
ability between students is explained by this model. The model contributes
with more than 12% for the explanation of the difference between students
and about 28% worse for the explanation of the difference between schools
– technological courses. This suggests that students are not distributed by
schools in a random way.
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Table 6.2. Results of two-level HLM – Models C and D

Model C Model D

Technological Scientific- Technological Scientific-

Courses humanistic Courses humanistic

Courses Courses

Parameters Estimate (s.e) Estimate (s.e) Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.319(0.173)∗ -0.242(0.136)∗ -0.691(0.195)∗∗∗ -0.689(0.167)∗∗∗

C TEC ASoc 0.351(0.214)∗ 0.324(0.203)∗

C TEC Desp -0.234(0.158) -0.292(0.164)
C TEC Elec -0.576(0.153)∗∗∗ -0.568(0.157)∗∗∗

C TEC Inf -0.555(0.124)∗∗∗ -0.504(0.131)∗∗∗

C TEC Mark -0.251(0.365) -0.382(0.358)
C TEC Mult -0.067(0.323) -0.084(0.329)
C CHUM CSE -0.442(0.107)∗∗∗ -0.328(0.114)∗∗

C CHUM CSH -0.244(0.110)∗ -0.130(0.115)
C CHUM CT -0.319(0.100)∗∗∗ -0.169(0.105)
REP ANT -0.316(0.085)∗∗∗ 0.533 (0.081)∗∗∗

UNIVERS 0.435(0.092)∗∗∗ 0.557(0.064)∗∗∗

IMP ESC 0.193(0.141) 0.305(0.099)∗∗∗

MAE EMP -0.141(0.088)
PARENTAL 0.204(0.066)∗∗∗

MHAB LIT 0.008(0.011) 0.042 (0.007)∗∗∗

N ASSOAL 0.087(0.047)∗ 0.103(0.037)∗∗

INTERNET 0.133(0.091) 0.117(0.073)∗∗

TEL FIXO 0.207(0.078)
RANDOM

Level 2: Schools – Intercept 0.050(0.037) 0.039(0.019)∗ 0.041(0.036) 0.053(0.024)∗

Level 1: Students 0.504(0.037)∗∗∗ 0.733(0.033)∗∗∗ 0.571(0.045)∗∗∗ 0.797(0.036)∗∗∗

Deviance(MCMC) 759.14 2569.27 798.36 2635.27
Number of valid data 353 1017 351 1010
DIC (pD) 779.73(20.59) 2592.61(23.24) 816.82(18.45) 2659.57(24.31)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05
C TEC Adm and C CHUM AV are the reference categories for Technological Courses and SH-Courses,

respectively.

In the model D (Table 6.2) there are variables related to the family
characteristics, MHAB LIT (the best academic achievement of the parents)
and variables related to possessions and services available at student’s home.
That, in a certain extent, is related to the socio-economical level of the fam-
ily. The model is very significant for SH courses: the variability between
schools is explained about 29% and between students is 6.7%. This also
suggests that students are not distributed by schools in a random way.

Model E (Table 6.3) is composed by variables concerning the location of
schools – URBANA and SUB URB (areas) – and by aggregate variables con-
cerning the age of students – MDIDA T and MDIDA E (average D IDADE
within classes and schools, respectively). There is a sharp contrast be-
tween courses, either on the location of schools either on the average age
of students in classes and schools. This model is quite significant and the
variability between schools is practically explained by these variables (81%
for technological courses and 44% for SH courses), but the explained vari-
ability between students is practically null (5.9% and 0.2%, for technological
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courses and SH courses, respectively). This perhaps contributes to explain
the considerable difference between schools.

Table 6.3. Results of two-level HLM – Model E

Technological Scientific-humanistic Scientific-humanistic

Courses Courses Courses–random slopes
Parameters Estimate (s.e) Estimate (s.e) Estimate (s.e)
FIXED

Intercept -0.697(0.214)∗∗∗ 0.359(0.151)∗∗ 0.362(0.160)∗∗

C TEC ASoc 0.163(0.172)
C TEC Desp -0.194(0.152)
C TEC Elec -0.461(0.145)∗∗∗

C TEC Inf -0.502(0.116)∗∗∗

C TEC Mark -0.539(0.318)∗

C TEC Mult 0.211(0.307)
C CHUM CSE -0.304(0.115)∗∗ -0.169(0.125)
C CHUM CSH -0.161(0.114) -0.095(0.127)
C CHUM CT -0.214(0.117)∗ -0.171(0.123)
URBANA 0.334(0.105) 0.209(0.089)∗∗

SUB URB -0.297(0.144)∗

MDIDA T -0.350(0.167)∗ -0.514(0.255)∗

MDIDA E 0.866(0.358)∗∗

RANDOM

Level 2: Schools – Intercept 0.012(0.016) 0.035(0.020)∗ 0.100(0.050)∗

Level 2: Schools – Interaction -0.264(0.125)∗

Level 2: Schools – Slope 0.754(0.345)∗

Level 1: Students 0.573(0.045)∗∗∗ 0.852(0.038)∗∗∗ 0.833(0.037)∗∗∗

Deviance(MCMC) 818.36 2752.82 2727.26
Number of valid data 359 1028 1028
DIC (pD) 831.14(12.78) 2772.09(19.27) 2750.93(23.68)

∗∗∗ Significant to p ≤ 0.001 ∗∗ Significant to p ≤ 0.01 ∗ Significant to p ≤ 0.05
C TEC Adm is the reference category and C CHUM AV is the reference category for Technological Courses.

The final models (Models C and E – SH courses and, Model E – technological
courses, mainly) decrease the variability between schools and a little between
students. Comparing the final models with the unconditional model (or even
the base model) we can observe that the change in the deviance value is very
highly significant, confirming the better fit of the “more elaborated models”
to the data.

Adding the explanatory variables has the effect of reducing the DIC
diagnostic, suggesting that the differences between schools and between stu-
dents have been partly explained by the additional variables – some of the
coefficients (for schools) are not significant anymore.

3. Conclusions

In our research, we found some evidences:

The students with age-grade imbalance have a tendency to score poorly.
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Students of sciences and humanities perform better than students of tech-
nological studies.

Students (SH courses) with parental family have a better performance.
In what concerns to students from schools localized in “rural” region – the
reference region:

– students from “urban” schools (SH courses) have better performance
than the “rural” ones;

– students from “suburban” schools (technological courses) have poorer
performance than the “rural” ones.

The existence of variability between schools is more difficult to explain in
scientific-humanistic courses.

It was found that students in technological courses show:

– higher “age-grade imbalance”; so,

– . . . higher age of attendance of 10th grade;

– higher repetition in years prior to the 10th;

– to attend, above all, schools localizated in “suburban” region;

– “best academic achievement of the parents” are poorer and have lower
influence;

– seem to have a greater “uniformity” among themselves.
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