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Abstract

When a diffusion is ergodic its transition density converges to its
invariant density, see Durrett (1998). This convergence enabled us to
introduce a sample partitioning technique that gives in each
sub-sample, maximum likelihood estimators. The averages of these
being a natural choice as estimators. To compare our estimators with
the optimal we obtained from martingale estimating functions, see
Sørensen (1998), we used the Ornstein-Uhlenbeck process for which
exact simulations can be carried out.
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1. Introduction

The remainder of this article is organized as follows. In Section 2 we
intruduce the definition of diffusions, followed by a definition of ergodic
propriety and a few results for that kind of diffusions in Section 3. Our new
results are described in Section 4. In Section 5 we present an application to
the Ornstein-Uhlenbeck diffusion. Finally, Section 6 gives the conclusions.
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2. Diffusions

A Diffusion is, see Iacus (2008, pg 33), a time-homogeneous stochastic
differential equation

(2.1) dXt = b(Xt,θ)dt + σ(Xt,θ)dBt,

where θ ∈ Θ ⊂ <p is a multidimentional parameter and {Bt}t≥0 is the
Brownian motion or Wiener process. The functions b : < × Θ → < and
σ : <× Θ →]0,+∞[ are known and such that the solution of (2.1) exist.

The function b is known as the drift coefficient of X, the function σ is
known as the diffusion coefficient of X.

An example of a diffusion is the Ornstein-Uhlenbeck process given by
the equation

dXt = θXtdt + σdBt.

3. Ergodicity

A diffusion is ergodic when there is a stochastic limit for the Hessian matrix
of the score when the sample size tends to infinite, the observations being
equally spaced, see Küchler & Sørensen (1997, pgs 123–127). We have

Theorem 3.1. The transition densities of ergodic diffusion tend to the

corresponding invariant densities when the time lag tends to infinite.

See Durrett (1996).

With E =]l, r[ the range of variation of Xt, t > 0, and l < x0 < r, let the
scale measure, be

(3.1) s(x,θ) = exp

[
−2

∫ x

x0

b(y,θ)

σ2(y,θ)
dy

]
; x ∈]l; r[

and speed measure,

(3.2) m(x,θ) =
1

s(x,θ)σ2(x,θ)
; x ∈]l; r[.

Thus, we have
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Theorem 3.2 (Sørensen (1998)). The diffusion is ergodic whenever, for

every θ ∈ Θ,

(3.3)

∫ r

x0

s(x,θ)dx =

∫ x0

l

s(x,θ)dx = +∞

and

(3.4) M(θ) =

∫ r

l

m(x,θ)dx < +∞.

The invariant density being

(3.5) fθ(x) =
m(x,θ)

M(θ)
; x ∈]l; r[.

4. Limit independence and sub-sampling

When the transition density converges to the invariant density there is 4
such that for t > 4, we can assume Xt to have the invariant density ap-
proximately. Thus, observations taken at times t1, . . . tn with t1 > 4 and
tj − tj−1 > 4, j = 2, . . . k may be treated as i.i.d. with the invariant den-
sity. Since 4 is not known we must obtain a lower bound for it. Given the
observations X1, . . . Xn with n = k × m, taken at times t1, . . . , tn, we can
use Friedman test to check

H0 : m4 > 4.

So, when this hypothesis holds, the matched sub-samples corresponding of
the lines of

X1 · · · Xj · · · Xm

...
...

...
X(i−1)m+1 · · · X(i−1)m+j · · · Xim

...
...

...

X(k−1)m+1 · · · X(k−1)m+j · · · Xkm

will have the same distribution.
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When H0 is not rejected we can treat the observations in each column as
being i.i.d. with the invariant density. Thus, from each column we can
obtain a maximum likelihood estimator for θj , j = 1, . . . ,m. Afterwards,
we take the average.

5. Application to the Ornstein-Uhlenbeck diffusion

The invariant density for the Ornstein-Uhlenbeck diffusion is the normal
density with mean 0 and variance − σ2

2θ
, θ < 0. Since this density has one

parameter we take σ = 1 and estimate θ.

We, thus, obtained

(5.1) θ̂ =
1

m

m∑

j=1

θ̂j =
1

m

m∑

j=1

[
−

2

k

k∑

i=1

X2
(i−1)m+j

]−1

.

We now compare our estimator with

θ̃n =
1

4
ln




n∑

i=1

Xi−1Xi

n∑

i=1

X2
i−1




with

n∑

i=1

Xi−1Xi > 0

which, see Sørensen (1998), is derived using martingale estimating func-
tions.

We used the transition density, which is known, to simulate trajecto-
ries of Ornstein-Uhlenbeck diffusion considering a few values of θ and we
obtained the followed tables with mean, variance and the mean square error
estimated values of two compared estimators. We have fixed σ = 1 and the
time lag, 4 = 1.
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Table 1. k = 10, m = 5.

θ Mean(θ̂) Mean (θ̃n) Var(θ̂) Var (θ̃n) MSE(θ̂) MSE (θ̃n)

− 0.001 − 0.1348 − 0.0317 0.0215 0.003 0.0392 0.0039

− 0.01 −0.1885 − 0.0488 0.0519 0.0044 0.0833 0.0058

− 0.1 − 0.389 − 0.1422 0.0898 0.0093 0.1724 0.011

− 1 − 3.8088 − 1.0775 15.5239 0.1641 23.258 0.1685

− 5 − 15.7905 − 2.5885 42.628 0.784 158.6364 6.5822

− 10 − 33.9045 − 2.5827 221.2223 1.2305 790.437 56.2212

Table 2. k = 20, m = 20.

θ Mean(θ̂) Mean (θ̃n) Var(θ̂) Var (θ̃n) MSE(θ̂) MSE (θ̃n)

− 0.001 − 0.0078 − 0.0059 5e− 06 1e− 04 1e− 04 1e− 04

− 0.01 − 0.018 − 0.0163 2e− 04 2e− 04 2e− 04 2e− 04

− 0.1 − 0.1148 − 0.1067 8e− 04 7e− 04 0.001 7e− 04

− 1 − 1.1099 − 1.011 0.0084 0.0159 0.0204 0.0158

− 5 − 5.5128 − 3.3625 0.1963 0.9667 0.4573 3.6277

− 10 − 11.1713 − 3.9323 0.6569 1.482 2.0221 38.2718

As we expected the results for our estimator are better than Sørensen
estimator when we consider a decomposition (k = 20, m = 20) which
means we can assume the assumption of independence of the observations in
each column and, consequently, observations having the approximately
invariant distribution. The rate of convergence of transition density to
invariant density for the Ornstein-Uhlenbeck diffusion depends of θ, and
is faster for large absolute values of θ, so our results are better for these
values of θ.
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6. Final remarks

This paper points towards the use of the invariant density while converging
out inference on ergodic diffusions. Another possible application of these
will be the use of a Kolmogorov-Smirnov test to check the model. Thus,
once the parameters are estimated we can apply such a test.
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