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Abstract

The autocorrelation function has a very important role in several
application areas involving stochastic processes. In fact, it assumes
the theoretical base for Spectral analysis, ARMA (and generalizations)
modeling, detection, etc. However and as it is well known, the results
obtained with the more current estimates of the autocorrelation func-
tion (biased or not) are frequently bad, even when we have access to
a large number of points. On the other hand, in some applications,
we need to perform fast correlations. The usual estimators do not al-
low a fast computation, even with the FFT. These facts motivated the
search for alternative ways of computing the autocorrelation function.
9 estimators will be presented and a comparison in face to the exact
theoretical autocorrelation is done. As we will see, the best is the AR
modified Burg estimate.
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1. Introduction

The correlation in general and the autocorrelation function in particular are
tools that belong to the daily life in Signal Processing, independently of the
application scientific field. In fact everybody knows that Spectral Analysis
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is based on the commonly named Wiener-Khintchin theorem∗ which states
that the spectrum is the Fourier transform of the autocorrelation function.
Other interesting application of the correlation is the ARMA modelling,
very important in applications. Other usual uses of the correlation can
be found in detection, for example, in Communications and Radar, delay
measurement, etc.

There is a slight difference between the engineering definition and the
one used in other areas like Statistics or Economy. In engineering the auto-
correlation function is defined by [12]:

(1) R(τ) = E{x(t)x(t + τ)}

and R(0) is the power of the signal x(t). With η as the mean value of the
process x(t), the Autocovariance is always defined by [1, 12]

(2) C(τ) = R(τ) − η2

leading to the autocorrelation definition used in Statistics or Economy

(3) ρ(τ) =
C(τ)

C(0)
.

In Engineering this is called Correlogram. As it is a common assumption:
η=0

(4) R(τ) = C(τ) and ρ(τ) =
R(t)

R(0)
.

The difference is merely a normalization useful in comparing different esti-
mates, but without interest for spectral estimation or ARMA modelling.

In almost all the practical applications, the autocorrelation function
must be estimated. This may lead to poor results. Here we will study the
behavior of several estimators of the autocorrelation function from the point
of view of the bias and also by studying the autocorrelation Toeplitz matrix
due to its importance in parameter estimation and spectrum analysis.

In the next section we will consider the current estimators and their
problems. In Section 3 we present some alternatives that are evaluated in
Section 4. At last we will present some conclusions.

∗Some authors prefer to rename it as Wiener-Khintchin-Einstein theorem, due to the
1905 Einstein’s paper on the Brownian motion.
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2. Current estimators and their problems

Let xn, n = 0, 1, . . . , L−1, be a realization of a stationary stochastic process.
Usual estimators are [8,9]:

the unbiased

(5) Ru(k) =
1

L − |k|

L−|k|
∑

i=0

xi.xi+|k|, |k| = 0, 1, 2, ...

the biased

(6) Rb(k) =
1

L

L−|k|
∑

i=0

xi.xi+|k|, |k| = 0, 1, 2, ...

We can verify easily that Rb(n) = Ru(n).w(n), where w(n) = 1− |n|
L ; |n| < L,

the so-called Bartlett (triangular) window. Their main properties can be
found in [12]. These estimators use a variable summation in the sense that
for a given k, we perform L − |k| additions leading to a triangular effect.
Alternatively we can use a fixed number of additions (FS)

(7) Rf (k) =
1

L − |N |

L−N
∑

i=0

xi.xi+|k|, |k| = 0, 1, 2, ..., N

or a half delay definition†

(8) R(k) =
1

L − |N |

L−N
∑

i=0

xi−k/2.xi+k/2, |k| = 0, 1, 2, ..., N,

that gives similar results. Normally, these estimators lead to poor estimates
forcing us to look for alternatives or algorithms that do not use it [4]. In
the AR case there are several better alternatives [2, 3, 6, 7, 10].

To have an idea of the problems we find in parameter estimation, we
present in the following tables several results obtained in estimating the AR
parameters. We used the well known Yule-Walker method and a modified

†See [11] for the fractional delay definition.
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Burg method (MBM)‡ [10]. An AR model with order 6 was randomly gen-
erated to create AR signals. We present the exact AR parameters and the
average estimates obtained over 100 trials and for two lengths of signals, 500
and 200.

Table 1. AR (6) estimations using 500 points.

Exact MBM YW Exact MBM YW

−3.7783 −3.7654 −2.2129 0.9163 0.9087 0.9059

6.4247 6.3821 1.5645 0.1767 0.1660 0.1647

−6.2929 −6.2322 0.0151 −0.0506 −0.0500 −0.0496

3.7838 3.7391 −0.2975 −0.0156 −0.0081 −0.0081

−1.3909 −1.3737 −0.2563 0.0007 0.0041 0.0043

0.2684 0.2653 0.2334 0.0003 0.0045 0.0045

As we can see, the MBM method gives slightly better results. However,
if we reduce the number of data points, the results become worst for both
methods and the Yule-Walker performs poorly.

Table 2. AR (6) estimations using 200 points.

Exact MBM YW Exact MBM YW

−1.8363 −1.8213 −1.6996 −1.9243 −1.9180 −1.5814

1.3869 1.3643 1.1346 2.2417 2.2236 1.5538

−0.4606 −0.4438 −0.2661 −1.2058 −1.1935 −0.4551

0.1111 0.1124 0.0511 0.4000 0.4039 0.0395

−0.0160 −0.0307 −0.0180 0.0418 0.0250 0.1052

0.0014 0.0140 0.0127 0.0052 0.0161 0.0452

‡It is better than the original Burg method.
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3. Nonlinear alternative estimators

We are going to present several alternative ways of estimating the
autocorrelation function.

Method Intermediate functions Autocorrelation
|k|=0,1,2,...,N

Polarity
coincidence A(k) =

1

L − |N |

L−N
∑

i=0

sin
[

xi.xi+|k|

]

sgn(.) is the signum function

R(k) = sin[A(k).π/2]

hybrid sign (HS)
A(k)=

1

L−|N |

L−N
∑

i=0

sin[xi.xi+|k|].|xi|

B(k) =
1

L − |N |

L−N
∑

i=0

|xi|

R(k) =
A(k)

B(k)

modified hybrid
sign (MHS) A(k)=

1

L−|N |

L−N
∑

i=0

sin[xi.xi+|k|].|xi|

B(k) =
1

L − |N |

L−N
∑

i=0

{|xi| + |xi+k |}

R(k) =
A(k)

B(k)

absolute
difference
average (ADA)

A(k) =
1

L − |N |

L−N
∑

i=0

|xi − xi+k |

B(k) =
1

L − |N |

L−N
∑

i=0

{|xi| + |xi+k |}

R(k) = 1− 2
[

A(k)
B(k)

]2

reversed ADA
(RADA) A(k) =

1

L − |N |

L−N
∑

i=0

|xi − xi+k |

B(k) =
1

L − |N |

L−N
∑

i=0

{|xi| + |xi+k |}

R(k) = 2
[

A(k)
B(k)

]2

− 1
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Method Intermediate functions Autocorrelation
|k|=0,1,2,...,N

double ADA
(DADA) A(k) =

1

L − |N |

L−N
∑

i=0

|xi + xi+k |

B(k) =
1

L − |N |

L−N
∑

i=0

|xi − xi+k |

C(k) =
1

L − |N |

L−N
∑

i=0

{|xi| + |xi+k |}

R(k) =
A2(k)B2(k)

C2(k)

relative
magnitude
(RM)

A(k)=
1

L−|N |

L−N
∑

i=0

max{|xi|, |xi+k|}

B(k)=
1

L−|N |

L−N
∑

i=0

min{|xi|, |xi+k |}.

sgn(xixi+k)

R(k) =
2A2(k)B2(k)

A2(k) + B2(k)

3.1. Alternative 8 – multiwindow (MW)

The first multiwindow method for spectral estimation was proposed by
Thomson [14, 15]. However, it uses the prolate spheroidal wave functions as
windows. These are difficult to generate. Alternatively Riedel and Sidorenko
[15] proposed minimum bias multipletaper spectral estimation that uses a
set of sinusoidal orthogonal windows, defined by

(9) vJ
n =

√

2

L + 2
.sin

πjn

L + 1
j = 0, ..., J − 1.

They introduced the weights wj = 1 − ( i
J )2, j = 0, ..., J − 1, and a normal-

ization factor W =
∑J−1

j=0
wj . To compute the autocorrelation estimate, the

simplest and efficient procedure is:
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Apply the windows to obtain a set of signals yj
n = vj

n.xn and compute the
windowed periodograms:

(10) Y j =
∣

∣FT
[

yj
n

]
∣

∣

2
.

Obtain the multiwindow spectrum:

(11) S(ejω) =

J−1
∑

j=0

wjY
J

W

and the autocorrelation function by doing the inverse Fourier transform.
Being the inverse of a spectrum, this autocorrelation function leads to a
positive definite matrix [5].

4. Comparisons

4.1. Mean square errors for the above alternatives
To do a fair comparison of the above alternatives, we generate three types
of signals, MA(10), AR(10), and ARMA(6,4) from 8 different systems. We
constrained the poles and zeros of the systems to lie near the unit circle.
We generated also the correct autocorrelation, R(k), for k = 0, 1, . . . , 10.
For each estimation procedure, we picked 200 points from each realization
and used the above estimators to obtain 9 estimates. The mean square
errors over 100 realizations were computed and are presented in the following
tables.

Table 3. Mean square errors for an MA(10) signal (200 points).

FS PC HS MHS ADA RADA DADA RM MW

0.1306 0.2507 0.1824 0.1638 0.1690 0.1585 0.1474 0.1467 0.1015

0.1254 0.2111 0.1505 0.1406 0.1421 0.1609 0.1389 0.1383 0.0934

0.1702 0.2784 0.2258 0.2039 0.2183 0.1924 0.1907 0.1864 0.1090

0.1597 0.2983 0.2088 0.1965 0.1986 0.2068 0.1857 0.1820 0.1162

0.1675 0.2664 0.1964 0.1879 0.1908 0.2065 0.1866 0.1850 0.1210

0.1332 0.2185 0.1717 0.1505 0.1583 0.1670 0.1471 0.1451 0.0739

0.1831 0.2777 0.2080 0.2087 0.2119 0.2029 0.1937 0.1911 0.1510

0.1724 0.2791 0.2067 0.1986 0.2013 0.2144 0.1908 0.1874 0.1353
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Table 4. Mean square errors for an AR(10) signal (200 points).

FS PC HS MHS ADA RADA DADA RM MW

0.0674 0.1323 0.0978 0.0827 0.0939 0.0930 0.0785 0.0775 0.0440

0.2123 0.3404 0.2691 0.2588 0.2599 0.2541 0.2461 0.2370 0.2456

0.0652 0.1417 0.0959 0.0826 0.0915 0.0853 0.0758 0.0748 0.0429

0.0815 0.1507 0.1110 0.0967 0.1053 0.1019 0.0906 0.0898 0.0658

0.0753 0.1491 0.1035 0.0906 0.0988 0.0943 0.0845 0.0829 0.0641

0.0743 0.1261 0.1016 0.0866 0.0958 0.0881 0.0845 0.0832 0.3164

0.0744 0.1492 0.1081 0.0926 0.1006 0.0980 0.0860 0.0838 0.0490

0.0619 0.1194 0.0915 0.0725 0.0828 0.0755 0.0665 0.0656 0.0365

It can be seen that the results are generally worst in the MA case than in
AR. This could not be expected, since we know that the autocorrelation in
the MA case is of finite duration, contrarily to the AR case. The results
obtained in the ARMA case are similar to the AR ones.

4.2. On the definiteness of the autocorrelatiom matrix
These results presented above point to consider the multiwindow method
to be the best. However to get some insight into deep behavior in a pos-
sible use for AR parameter estimate, we constructed, for each estimate,
the corresponding autocorrelatiom matrix and computed its eigenvalues.
For each simulation run we counted the number of times the autocorrela-
tion matrix was negative definite. In the following tables we show the results
corresponding to the situations in Tables 3 and 4.
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Table 5. Times the autocorrelation was negative definite for an MA(10) signal

(200 points).

FS PC HS MHS ADA RADA DADA RM MW

0 65 20 1 7 21 1 5 0

0 86 39 10 30 55 27 26 0

0 54 9 2 8 23 4 4 0

0 84 28 7 21 41 9 11 0

1 95 60 32 63 63 43 52 0

0 40 6 1 3 12 1 1 0

1 96 57 27 55 69 49 51 0

0 82 35 12 30 47 26 17 0

Table 6. Times the autocorrelation was negative definite for an ARMA(6,4)

signal (200 points).

FS PC HS MHS ADA RADA DADA RM MW

32 87 61 40 90 91 72 66 0

26 87 56 35 72 93 57 65 0

34 82 63 41 85 87 52 52 0

34 92 58 62 93 98 80 78 0

28 95 69 48 86 97 73 87 0

49 96 57 68 88 98 80 94 0

43 97 79 51 88 97 75 86 0

61 99 70 75 90 100 75 95 0
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As expected the multiwindow estimator leads to a positive definite autocor-
relation matrix.

4.4. Classic vs multiwindow and MBM

The previous tests showed that among the proposed alternatives, the multi-
window is the best. However to try to obtain more definite results, another
set of tests were performed using the following estimators: unbiased fix sum-
mation length, biased variable summation length (BVS), ujnbiased variable
summation length (UVS), multiwindow, and modified Burg method (AR)
[10]. Concerning the definiteness of the autocorrelatiom matrix, we know
that MW and MBM led to a positive definite autocorrelation matrix. This
does not happen with the others as seen in the following table.

Table 7. Times the autocorrelation was negative definite for an MA(10), AR(1),

and ARMA(6,4) signal (200 points).

FS BVS UVS FS BVS UVS FS BVS UVS

0 0 98 46 46 86 29 29 69

13 17 100 28 26 57 52 42 92

15 15 99 55 51 89 24 25 65

1 1 99 45 46 95 45 46 83

2 2 94 59 50 88 47 52 88

9 6 99 88 85 99 61 63 92

6 4 100 37 43 88 40 40 85

33 31 100 41 35 74 95 93 100

From the above results, it seems clear that, among the classic estimators,
the unbiased fixed summation is preferable. To try to find and distictive
behaviour between Multiwindow and MBM estimators, we performed a sim-
ulation with ARMA(8,6) systems and using only 100 points. We obtained
the square errors shown in the following table.
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Table 8. Mean square errors for an ARMA(8,6) signal (100 points).

FS BVS UVS MW MBM

0.0826 0.0798 0.1406 2.4564 0.0744

0.0715 0.0712 0.1180 2.3559 0.0695

0.2741 0.2677 0.3182 1.4217 0.2459

0.2058 0.2025 0.2600 1.6791 0.1891

0.0107 0.0105 0.0674 2.5880 0.2494

0.2451 0.2355 0.2759 1.6565 0.2200

0.1290 0.1257 0.1846 2.2624 0.1192

0.0212 0.0200 0.0748 2.5798 0.0210

These results show that MBM is clearly better.

5. Conclusions

We made a study of the autocorrelation estimators: the classic, several
based on nonlinear transformations, the multiwindow and the modified Burg
method. The simulation results showed that the nonlinear transformations
based autocorrelations are worst than the classic. These are frequently bet-
ter in terms of mean square error than the others, but are frequently worst
in terms of positiveness of the autocorrelation matrix than the multiwindow
or MBM autocorrelations.

In general the behaviour becomes worst with the reduction in the num-
ber of available points and the motion of the poles or zeros to near the unit
circle. From the results, we can conclude that the best estimator is the
MBM estimator.
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