
Discussiones Mathematicae 87
Probability and Statistics 30 (2010 ) 87–101

EXPONENTIAL SMOOTHING AND RESAMPLING

TECHNIQUES IN TIME SERIES PREDICTION

Maria Manuela Neves

CEAUL and Mathematics Department, Instituto Superior de Agronomia Technical

University of Lisbon

Tapada da Ajuda, 1349–017, Lisboa, Portugal

e-mail: manela@isa.utl.pt

and

Clara Cordeiro

Mathematics Department, Faculty of Science and Technology

University of Algarve, Faro, Portugal

e-mail: ccordei@ualg.pt

Abstract

Time series analysis deals with records that are collected over time.
The objectives of time series analysis depend on the applications, but
one of the main goals is to predict future values of the series. These
values depend, usually in a stochastic manner, on the observations
available at present. Such dependence has to be considered when pre-
dicting the future from its past, taking into account trend, seasonal-
ity and other features of the data. Some of the most successful fore-
casting methods are based on the concept of exponential smoothing.
There are a variety of methods that fall into the exponential smooth-
ing family, each having the property that forecasts are weighted com-
binations of past observations. But time series analysis needs proper
statistical modeling. The model that better describes the behavior
of the series in study can be crucial in obtaining “good” forecasts.
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Departures from the true underlying distribution can adversely affect
those forecasts. Resampling techniques have been considered in many
situations to overcome that difficulty. For time series, several authors
have proposed bootstrap methodologies. Here we will present an auto-
matic procedure built in language that first selects the best expo-
nential smoothing model (among a set of possibilities) for fitting the
data, followed by a bootstrap approach for obtaining forecasts. A real
data set has been used to illustrate the performance of the proposed
procedure.

Keywords: time series; bootstrap; exponential smoothing; forecast-
ing; accuracy measures.
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1. Introduction and motivation

A time series is a set of observations {xt1 , xt2 , . . . , xtN } each one being
recorded at a specific time t1, t2, . . . tN . One specific feature in time series
is that the records are usually dependent.

A time series is said to be discrete (the type here considered) if the
set T0 of times at which observations are made is a discrete set. Usually
the records are done at equally spaced times and the time series is then
represented by

{xt, t ∈ T0} where T0 = {1, 2, . . . , N} or T0 = N or T0 = Z.

If the observations are made continuously in time, the time series is said to
be continuous.

The areas of application of time series cover any area where statistics
is applied, the main one being perhaps Economics, Engineering, Social Sci-
ences, Medical Sciences and Environmental Sciences.

The motivation for this work was to model a data set of the number
of airplanes that per month cruses the Flight Information Region (FIR) of
Lisbon for the period 1985–2009∗ and to predict values of the series. A plot
of these data can seen in Figure 1.

∗Data gently given by the Portugal Navigation-NAV Portugal, E.P.E.



Exponential smoothing and resampling techniques in ... 89

Air traffic v olume / monthl y 1985− 2009 (March)

1985 1990 1995 2000 2005 2010

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

Figure 1. Number of planes in FIR of Lisbon per month.

In Cordeiro and Neves (2006) different approaches of resampling techniques
for dependent data were applied to the first part of this data set (1985–2005)
and prediction intervals were obtained.

The idea of this work is now to join exponential smoothing and boot-
strap to built an automatic procedure in language for modeling and
forecasting time series.

2. Time series analysis

When the analysis of a time series is performed there are several objectives
we want to attain. Some of the main ones are (Chatfield, 2004):

• Description The first step in the analysis is usually to plot the data
and to obtain simple descriptive measures of the main properties. It
begins with plotting a graph, looking for trend and seasonal effects,
possible outliers, possible turning points, etc.

• Explanation When there are observations on two or more variables,
we can try to use the variation in one time series to explain the vari-
ation in the other. This needs to know the process which generates a
given time series.
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• Forecasting Given an observed time series one of the main goals is to
predict the future values of the series. Adequate models for describing
the series are now very important.

• Control It is important in many engineering and industrial appli-
cations after predicting values of a series to adjust various control
parameters.

A time series can be thought as a combination of various components:

• Trend (T ) – describes the long term direction of the series;

• Seasonal (S) – describes the short term recurring pattern of change,
that repeats with a known periodicity (e.g. 12 months per year or 7
days per week);

• Cycle (C) – describes a pattern that repeats with some regularity
but with varying amplitude and duration;

• Error (ε) – describes the erratic movement in the series.

The graphical representation of a time series is a very important auxiliary
tool, because it allows us to look for those patterns that the time series can
exhibit, described above. These patterns need to be considered to forecast
future values.

Those components can be combined in several ways, two examples are:

• an additive model yt = Tt + St + Ct + εt,

• a multiplicative model yt = Tt × St × Ct × εt,

where yt is the observation, Tt the trend, St the seasonality, Ct the cycle
component and εt the random error at time t.

It is of primary importance to develop mathematical models that provide
plausible explanations for sample data in a time series and can be used for
modeling and forecasting. Theory of stochastic processes is then absolutely
necessary. Most of the probability theory of time series is concerned with
stationary time series and for this reason several procedures were developed
to turn a non-stationary series to a stationary one, see Chatfield (2004).
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3. Exponential smoothing methods

Forecasting future values of a time series is one of the main objectives in the
analysis of a time series. Forecasting methods have been developed based
on well known models: AR, ARIMA, etc.

Around since the 1950s another class of forecasting methods appeared.
Exponential smoothing (EXPOS) refers to a set of methods that, in a ver-
satile way, can be used to model and to obtain forecasts. These methods
are based on the concept of exponential smoothing, i.e., they have ... the

property that forecasts are weighted combinations of past observations, with

recent observations given relatively more weight than older observations. The

name “exponential smoothing” reflects the fact that the weights decrease ex-

ponentially as the observations get older. (Hyndman et al., 2008).

Following very closely Hyndman et al. (2008) we can summarize some
of the most well-known exponential smoothing methods:

• Simple exponential smoothing — Given a time series, let ŷt be the
forecast for the value yt. Once observed this value, εt = yt − ŷt is the
forecast error. Brown (1959) considered to obtain the forecast for the
next period, ŷt+1, as the forecast for the previous period adjusted by
using the forecast error, i.e.,

(1) ŷt+1 = ŷt + α(yt − ŷt),

with α a constant between 0 and 1.

Developing relation (1) it is easy to show that ŷt+1 represents a weighted
moving average of all past observations with the weights decreasing
exponentially.

• Holt’s linear method — simple exponential smoothing works well
when there are no trend, seasonality or other patterns. Holt (1957)
extended it to linear exponential smoothing allowing forecasting of data
with trend. The forecast for this method is found using two smoothing
constants, α and β (with values between 0 and 1) and three equations:

− Level lt = αyt + (1 − α)(lt−1 + bt−1)

− Growth bt = β(lt − lt−1) + (1 − β)bt−1

− Forecast ŷt+h|t = lt + bth,
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where lt denotes an estimate of the level of the series at time t and bt

denotes an estimate of the slope (growth) of the series at time t. Level
lt and slope bt are considered as two components of the trend.

• Holt-Winters Trend and Seasonality Method — the previous meth-
ods are not appropriate if data exhibit seasonal patterns. Holt (1957)
proposed a method for seasonal data, later improved by Winters(1960),
the reason why is known by “Holt-Winters method”.
The method is based on three smoothing equations (for level, growth
and seasonality). For additive seasonality the equations are:

− Level lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1)

− Growth bt = β(lt − lt−1) + (1 − β)bt−1

− Seasonal st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m

− Forecast ŷt+h|t = lt + bth + s
t−m+h

+
m

h+
m = [(h− 1)modm]+ 1 and parameters (α, β, γ) are usually restricted

to lie between 0 and 1.

• Gardner and Mckenzie (1985) proposed a modification of Holt’s linear
and Holt-Winters to allow the “damping” of trends, i.e., the growth is
dampened by a factor of φ for each additional future time period. For
example, in Holt’s linear method the equation for level will become

lt = αyt + (1 − α)(lt−1 + φbt−1).

Methods for the best choice of starting values for the parameters in equations
above, “the initialization problem”, have been studied for several authors.

Pegels (1969) classified exponential smoothing methods regarding the
trend and seasonal patterns that a series reveals as: none, additive (linear)
or multiplicative (nonlinear). Since then, many researchers such as Gard-
ner(1985), Hyndman et al. (2002) and Taylor (2003) have investigated and
developed EXPOS methods. Fifteen possibilities of exponential smooth-
ing (ignoring the error component) are resumed in Table 1. For example
(N,N) stands for the simple exponential smoothing, (A,N) the Holt’s lin-
ear method; see Hyndman et al. (2008) for the complete description.
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Table 1. The exponential smoothing methods.

Seasonal Component

Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) A,N A,A A,M

Ad (Additive damped) Ad,N Ad,A Ad,M

M (Multiplicative) M,N M,A M,M

Md (Multiplicative damped) Md,N Md,A Md,M

In the past ten years the exponential smoothing methods has undergone
a substantial revolution due to the consideration of the new state space
framework.

Hyndman et al. (2008) presents exponential smoothing state space mod-
els for all methods showed in Table 1, allowing then to obtain forecasting
intervals.

4. The procedure

Cordeiro and Neves (2006, 2007) compared the following bootstrap method-
ologies for dependent data and obtained forecast intervals:

• Block bootstrap: Non-overlapping block bootstrap, Moving block boot-
strap, Circular block bootstrap, Stationary block bootstrap.

• Sieve bootstrap.

Sieve bootstrap was proposed by Bühlman (1997) for dependent observations
and extended by Alonso et al. (2002) for constructing prediction intervals
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in stationary time series. In Cordeiro and Neves (2006, 2007) sieve boot-
strap revealed to be better than the other block bootstrap methodologies
for obtaining prediction intervals.

Based on those ideas the procedure Boot.EXPOS was developed and
the steps are summarized and compared below with those of the sieve boot-
strap. Step 0, step 5 and step 6 contain the differences we established to the
sieve bootstrap.

Sieve bootstrap

Step 1. Adjust an autoregressive
model with increasing order p

using AIC criterion;

Step 2. Obtain the residuals;

For B replicates:

Step 3. Resample the centered
residuals;

step 4. Use AR for obtaining a new
series by recursion;

Step 5. Fit AR(p) to the new series;

Step 6. Obtain the predicted values
from the new series using the
previous AR(p) fit.

Boot.EXPOS

Step 0. Select the best EXPOS
method by AIC; components
are removed and the residuals
obtained;

Step 1. Adjust an autoregressive
model with increasing order p

using AIC criterion;

Step 2. Obtain the residuals;

For B replicates:

Step 3. Resample the centered
residuals;

Step 4. Use AR for obtaining a new
series by recursion;

Step 5. Add the components in step
0 to the new series; fit EXPOS
method (same type as in Step
0);

Step 6. Obtain the predicted values
from the new series using the
previous EXPOS fit.

5. The computational work

Cordeiro and Neves (2008, 2009) present a computational algorithm con-
sidering a choice among only four methods: single exponential smoothing,
Holt´s linear trend, Holt-Winters seasonal smoothing with additive and with
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multiplicative seasonality. Now that algorithm was extended to the fifteen
methods pointed out in Section 3. and several accuracy measures were con-
sidered.

The procedure we built considers statistical tests, transformations
and differentiation whenever it is necessary for studying and/or obtaining
stationarity of the random part before the AR adjustment.

Some packages are used: car, forecast and tseries. The new pro-
cedure using bootstrap and EXPOS methods, Boot.EXPOS(), was con-
structed in language.

The performance of our procedure is evaluated considering the in-sample
performance and the out-sample performance. The in-sample performance
is based on the Mean Squared Error (MSE) and the out-sample performance
is based on the forecasts for a given period. Denoting by et = yt − ŷt the
forecasting error, the following accuracy measures are here considered:

Table 2. Accuracy measures.

Acronyms Definition Formula

RMSE Root Mean Squared Error
√

(mean(e2
t ))

MAE Mean Absolute Error mean(|et|)

MAPE Mean Absolute Percentage Error mean(100
∣∣∣ et

ŷt

∣∣∣)

6. Case study

The data set here studied is the Australian monthly gas production in the
period of 1956 until 1995 (the data set is gas in , Figure 2). It is a
monthly time series with 476 observations in 39 years. The series exhibits
periodic behavior with a seasonal cycle, s=12 months. The Australian gas
production has a constant production from 1956 to 1970, and since then an
increase is observed, due to the augment of gas consumption.
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Figure 2. Australian gas production.

This time series was separated into two blocks:

• the first {y1, . . . , y464} from January 1956 to December 1994 as a sam-
ple set for model estimation;

• the remaining h=12 observations, that is {y465, . . . , y476} from January
1995 to December 1995 as post-sample for forecast evaluation.

The first step in our procedure is to fit the best EXPOS model (among
the 15 methods with two sources of errors: additive and multiplicative)
selected by AIC criterion minimization. The parameters are optimized using
the mean squared error (MSE). For this time series the EXPOS model chosen
is that one with multiplicative damped trend, multiplicative seasonality and
multiplicative error term, ets†(M,Md,M). Figure 3(a) shows level, trend and
seasonality components.

†ets stands for error, trend and seasonality.
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Figure 3. Time series gas: (a) EXPOS choice and EXPOS residuals; (b) correlo-

gram and partial correlogram, (c) cumulative periodogram.
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After fitting an EXPOS model, the residuals are extracted for white noise
checking. Graphical approaches, correlogram and the cumulative periodo-
gram are used, Figure 3(b) and (c), for diagnostic checking of the residuals.
High correlation is evident. An autoregressive model is used to filter the
EXPOS residuals. After fitting an AR model the correlogram, partial cor-
relogram and cumulative periodogram are obtained, see Figure 4. Now the
white noise hypothesis is not rejected so the bootstrap of the residuals is
applied.

(a)

AR(19)$residuals

1960 1970 1980 1990

−0
.2

0.
0

0.
2

0 5 10 15 20 25

−0
.1

5
−0

.0
5

0.
05

0.
15

Lag

A
C

F

0 5 10 15 20 25

−0
.1

5
−0

.0
5

0.
05

0.
15

Lag

P
A

C
F

(b)

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

AR(19)$residuals

Figure 4. AR residuals: (a) correlogram and partial correlogram; (b) cumulative

periodogram.
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Boot.EXPOS steps shown in Section 4 are now executed and the accuracy
measures proposed in Table 2 are calculated.

The results in Table 3 reveal the good performance of Boot.EXPOS.

Table 3. Accuracy measures for the gas time series.

Accuracy measures

Serie n s h Method RMSE MAE MAPE

gas 476 12 12 ets 2773.72 2097.73 4.22

Boot.EXPOS 2348.162348.162348.16 1908.151908.151908.15 3.843.843.84

7. Closing comments

An initial approach, Cordeiro and Neves (2008, 2009), for using exponen-
tial smoothing and bootstrap in time series forecasting is here extended by
incorporating more models for selection and more accuracy measures for
checking the performance of the procedure.

A case study illustrates the application of our procedure. Several other
examples have been studied and the results obtained reveal this procedure
as a very promising technique.
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