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Abstract

Two near-exact distributions for the generalized Wilks Lambda
statistic, used to test the independence of several sets of variables with
a multivariate normal distribution, are developed for the case where
two or more of these sets have an odd number of variables. Using the
concept of near-exact distribution and based on a factorization of the
exact characteristic function we obtain two approximations, which are
very close to the exact distribution but far more manageable. These
near-exact distributions equate, by construction, some of the first exact
moments and correspond to cumulative distribution functions which
are practical to use, allowing for an easy computation of quantiles. We
also develop three asymptotic distributions which also equate some of
the first exact moments. We assess the proximity of the asymptotic
and near-exact distributions obtained to the exact distribution using
two measures based on the Berry-Esseen bounds. In our compara-
tive numerical study we consider different numbers of sets of variables,
different numbers of variables per set and different sample sizes.
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1. Introduction

The generalized Wilks Lambda statistic (Wilks, 1932, 1935) is used in mul-
tivariate analysis to test the independence among m sets (m ≥ 2) of random
variables (r.v.’s), under the normality assumption. For the case when there
is at most one set with an odd number of variables among the m sets, we
have the exact distribution in the form of a Generalized Integer Gamma
(GIG) distribution obtained by Coelho (1998), but for the case where at
least two sets, among the m sets, have an odd number of variables, we
do not have yet an exact distribution in a manageable form, adequate for
further manipulation. Although we have, for this general case, some asymp-
totic distributions (see for example Box (1949) and Anderson (2003)) and
some near-exact distributions (Coelho, 2003, 2004), in this paper we develop
three asymptotic distributions and two new near-exact distributions, these
later ones obtained in a concise and manageable form but nonetheless ex-
tremely close to the exact distribution in terms of characteristic function
(c.f.), probability density function (p.d.f.), cumulative distribution function
(c.d.f.), moments and quantiles.

In order to develop the near-exact distributions we first factor the exact
c.f. and then we replace a suitably chosen part of the exact c.f., which
corresponds to the c.f. of a Logbeta distribution, by an adequate asymptotic
approximation. Depending on the asymptotic result used, one may obtain
different near-exact approximations. In one case we replace the c.f. of a
Logbeta r.v. by the c.f. of the sum of two Gamma r.v.’s and, in the other
case, by the c.f. of a mixture of two Gamma r.v.’s. These distributions
match the first three and four exact moments, respectively. By joining this
small part with the remaining unchanged part of the original c.f., we get
what we call a near-exact c.f. In the first case this c.f. corresponds to a
particular Generalized Near-Integer Gamma (GNIG) distribution, while in
the second case it corresponds to a mixture of two GNIG distributions. The
corresponding near-exact c.d.f.’s are obtained in a concise and manageable
form, perfectly handled by a number of available software programs, allowing
for the computation of near-exact quantiles.
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The concept of near-exact distribution has already been introduced in a
number of papers (Coelho, 2003, 2004; Grilo and Coelho, 2007, 2010) and
also a similar derivation procedure has already been applied to obtain near-
exact distributions for the product of an odd number of particular indepen-
dent Beta r.v.’s (Grilo and Coelho, 2007). Now, based on a factorization
of the exact c.f. of the logarithm of the generalized Wilks Λ statistic, we
develop near-exact distributions for this well-known statistic.

Our paper is organized as follows: in Section 2 we present some useful
distributions for our work; in Section 3 we develop two near-exact distri-
butions, based on factorizations of the exact c.f., and also three asymptotic
distributions for the generalized Wilks Λ statistic. In Section 4, we use
two measures based on the Berry-Esseen bounds to assess the behavior of
the near-exact and asymptotic distributions proposed and also to compare
them with a rather well-known asymptotic distribution (Box, 1949; An-
derson, 2003) and with another near-exact distribution (Coelho, 2004). In
Section 5, we provide some conclusions and final remarks.

2. Some distributions used in the paper

Since some of our near-exact and asymptotic distributions are GNIG dis-
tributions or finite mixtures of GNIG distributions we now introduce this
distribution along with the useful Logbeta distribution.

Let Z be a r.v. with a GIG (Generalized Integer Gamma) distribution
of depth g (Coelho, 1998), with shape parameters r1, . . . , rg ∈ N (where N

is the set of positive integers) and all different rate parameters λ1, . . . , λg ∈
R

+(being R
+ the set of positive reals). We will denote this fact by

Z ∼ GIG(r1, . . . , rg;λ1, . . . , λg) .

The p.d.f. of Z is given by

fZ(z) = K

g
∑

i=1

Pi(z)e
−λiz , (z > 0),

where

(1) K =

g
∏

i=1

λri

i
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and Pi(z) is a polynomial of degree ri − 1 in z, which may be written as

Pi(z) =

ri∑

k=1

ci,kz
k−1,

where

(2) ci,ri
=

1

(ri − 1)!

g
∏

j=1

j 6=i

(λj − λi)
−rj

and, for k = 1, . . . , ri − 1,

(3) ci,ri−k =
1

k

k∑

j=1

(ri − k + j − 1)!

(ri − k − 1)!
R(j − 1, i)ci,ri−(k−j) ,

where

(4) R(n, j) =

g
∑

i=1
i6=j

ri(λj − λi)
−n−1, (n = 0, . . . , ri − 1) .

The c.d.f. of Z is given by

FZ(z) = K

g
∑

i=1

P ∗
i (z) , (z > 0)

with K given by (??) and where

P ∗
i (z) =

ri∑

k=1

ci,k
(k − 1)!

λk
i






1 −





k−1∑

j=0

λj
iz

j

j!



 e−λiz







with ci,k (i = 1, . . . , g; k = 1, . . . , ri) given by (??) through (??).
Now, let us consider Z ∼ GIG(r1, . . . , rg;λ1, . . . , λg) and X ∼ G(r, λ),

two independent r.v.’s with r ∈ R
+\N and λ 6= λj, ∀j ∈ {j = 1, . . . , g}.

Then the r.v. W = Z +X has a GNIG (Generalized Near-Integer Gamma)
distribution with depth g + 1 (Coelho, 2004). Symbolically,

(5) W ∼ GNIG(r1, . . . , rg, r;λ1, . . . , λg, λ) .
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The p.d.f. of W is given by
(6)

fW (w) = Kλr
g
∑

j=1

e−λjw

rj∑

k=1

{

cj,k
Γ(k)

Γ(k+r)
wk+r−1

1F1(r, k+r,−(λ−λj)w)

}

,

(w > 0)

and the c.d.f. by

(7)

FW (w) = λr wr

Γ(r + 1)
1F1(r, r + 1,−λw)

−Kλr
g
∑

j=1

e−λjw

rj∑

k=1

c∗j,k

k−1∑

i=0

wr+iλi
j

Γ(r + 1 + i)

1F1(r, r + 1 + i,−(λ− λj)w), (w > 0),

where

K =

g
∏

j=1

λ
rj

j and c∗jk =
cjk

λk
j

Γ(k)

with cj,k given by (??) through (??). In the above expressions

1F1(a, b, z) =
Γ(b)

Γ(a)

∞∑

j=0

Γ(a+ j)

Γ(b+ j)

zj

j!

=
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0
eztta−1(1 − t)b−a−1dt, (a 6= b),

is the Kummer confluent hypergeometric function (Abramowitz and Stegun,
1974) which has good convergence properties and nowadays it can be found
in a number of software packages, such as Mathematica.

The c.f. of W in (??) is given by

(8) φW (t) = λr(λ− it)−r
g
∏

j=1

λ
rj

j (λj − it)−rj ,

where r ∈ R
+\N, λ ∈ R

+, rj ∈ N and λ 6= λj , ∀j ∈ {1, . . . , g}. If r ∈ N

then the GNIG distribution of depth g+ 1 reduces to a GIG distribution of
depth g+ 1. That is, the GIG distribution is a particular case of the GNIG
distribution.
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If the r.v. W has a distribution that is a mixture, with k components,
of GNIG distributions, the j-th component with weight πj and depth gj , we
will denote this fact by

W ∼MkGNIG

(π1; r11, . . . , rg11;λ11, . . . , λg11| . . . |πk; r1k, . . . , rgkk;λ1k, . . . , λgkk) .

If X is a r.v. with a Beta distribution, with parameters α > 0 and
β > 0, symbolically

X ∼ Beta(α, β),

then the h-th moment of X is given by

(9) E(Xh) =
B(α+ h, β)

B(α, β)
=

Γ(α+ β)

Γ(α)

Γ(α+ h)

Γ(α+ β + h)
, (h > −α) .

If Y = − lnX then Y is a r.v. with a Logbeta distribution with parameters
α and β (Johnson et al., 1995), denoted by

Y ∼ Logbeta(α, β) .

The p.d.f. of Y is

fY (y) =
1

B(α, β)
e−αy(1 − e−y)β−1 , (y > 0) .

Since the Gamma functions in (??) are still defined for h complex (in strict
sense), the c.f. of Y is given by

(10) φY (t) = E(eitY ) = E(e−it ln X) = E(X−it) =
Γ(α+ β)

Γ(α)

Γ(α− it)

Γ(α+ β − it)
,

where i = (−1)1/2 and t ∈ R (being R the set of real numbers). Through
(??) we know that, if E(|Y h|) <∞ then

E(Y h) =
1

ih
dh

dth
φY (t)

∣
∣
∣
∣
t=0

, (h ∈ N),

and thus we can get expressions for some of the first moments, µ′
h, for the

r.v. Y .
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For example, the expressions of the first four moments are given by

(11)

µ′1 = E(Y ) = ψ(α+ β) − ψ(α)

µ′2 = E(Y 2) = ψ′(α) − ψ′(α+ β) + [ψ(α+ β) − ψ(α)]2,

µ′3 = E(Y 3) = ψ′′(α + β) − ψ′′(α) + [ψ(α+ β) − ψ(α)]3

+3 [ψ(α+ β) − ψ(α)]
[
ψ′(α) − ψ′(α+ β)

]
,

µ′4 = E(Y 4) = ψ′′′(α) − ψ′′′(α+ β) + [ψ(α) − ψ(α+ β)]4

+6 [ψ(α) − ψ(α+ β)]2
[
ψ′(α) − ψ′(α+ β)

]

+3
[
ψ′(α) − ψ′(α+ β)

]2
+ 4 [ψ(α) − ψ(α+ β)]

[
ψ′′(α) − ψ′′(α+ β)

]
,

where ψ(x) = d
dx ln Γ(x) is the digamma function, ψ′(x) = d2

dx2 lnΓ(x) =
d
dxψ(x) is the trigamma function, ψ′′(x) = d

dxψ
′(x) is the quadrigamma

function, and so on.

3. Near-exact and asymptotic distributions for the

generalized Wilks Λ statistic

Let X be a random vector with dimension p, where the r.v.’s have a joint
p-multivariate Normal distribution Np(µ,Σ). Let us consider X split into
m subvectors, where the k-th subvector has pk variables, being p =

∑m
k=1 pk

the overall number of variables. Then, each subvector X k(k = 1, . . . ,m) will
have a pk-multivariate Normal distribution Npk

(µ
k
,Σkk). Symbolically,

X = [X
′

1, . . . , X
′

k, . . . , X
′

m]
′

∼ Np

(
µ,Σ

)

where

µ = [µ
′

1
, . . . , µ

′

k
, . . . , µ

′

m
]
′

, Σ =













Σ11 · · · Σ1k · · · Σ1m

...
. . .

...
...

Σk1 · · · Σkk · · · Σkm

...
...

. . .
...

Σm1 · · · Σmk · · · Σmm













.
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For a sample of size n + 1, the 2/(n + 1)-th power of likelihood ratio test
statistic, used to test the null hypothesis of independence of them subvectors
Xk,

(12) H0 : Σ = diag(Σ11, . . . ,Σkk, . . . ,Σmm) ,

is the generalized Wilks Λ statistic

(13) Λ =
|V |

∏m
k=1 |Vkk|

,

where | . | stands for the determinant and V is either the Maximum Likeli-
hood Estimator (MLE) of Σ or the sample variance-covariance matrix of X,
and Vkk is either the MLE of Σkk or the sample variance-covariance matrix
of Xk.

The generalized Wilks Λ statistic may be written as (Anderson, 2003,
Theorem 9.3.2)

(14) Λ =

m−1∏

k=1

Λk(k+1,...,m) ,

where Λk(k+1,...,m) denotes the Wilks Λ statistic used to test the indepen-
dence between the k-th subvector and the vector formed by joining subvec-
tors k + 1 through m. In other words, for k = 1, . . . ,m − 1, Λk(k+1,...,m) is
the Wilks Λ statistic used to test the null hypothesis,

(15) H
(k)
0 : [Σk,k+1 . . . Σkm] = 0pk×(pk+1+...+pm), k = 1, . . . ,m− 1.

Using the result in Theorem 9.3.2 in Anderson (2003) and considering that
the k-th subvector has pk variables (k = 1, . . . ,m), the distribution of

Λk(k+1,...,m) in (??), under the null hypothesis H
(k)
0 , is the same as the distri-

bution of
∏pk

j=1 Yj , where, for a sample of size n+1 (with n ≥ p1 + · · ·+pm),
Yj are pk independent r.v.’s with Beta distributions,

Yj ∼ Beta

(
n+ 1 − qk − j

2
,
qk
2

)

, j = 1, . . . , pk ,

where qk = pk+1 + · · · + pm. This way, based on expression (??) we may
write
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E(Y h
j ) =

Γ
(

n+1−j
2

)

Γ
(

n+1−qk−j
2

)

Γ
(

n+1−qk−j
2 + h

)

Γ
(

n+1−j
2 + h

) ,

(

h > −
n+ 1 − qk − j

2

)

and, given the independence of the pk r.v.’s Yj , under the null hypothesis

H
(k)
0 in (??),

E
(

Λh
k(k+1,...,m)

)

=

pk∏

j=1

E(Y h
j )=

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−qk−j
2

)

Γ
(

n+1−qk−j
2 + h

)

Γ
(

n+1−j
2 + h

) ,

(

h > −
n+ 1 − qk − pk

2

)

.

Given the independence of the m − 1 statistics Λk(k+1,...,m) in (??), under
the null hypothesis of independence of the m sets of variables in (??), we
obtain the h-th moment of the generalized Wilks Λ statistic in (??), for a
sample of size n+ 1, as

(16)

E(Λh)=
m−1∏

k=1

E[Λh
k(k+1,...,m)] =

m−1∏

k=1

pk∏

j=1

E(Y h
j )

=
m−1∏

k=1

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 + h

)

Γ
(

n+1−qk−j
2 + h

)

Γ
(

n+1−qk−j
2

) .

Since the Gamma functions in (??) are still valid for any strictly complex
h, for a sample of size n+ 1, the c.f. of the r.v. W = − lnΛ is given by

(17)

φW (t)=E(eitW ) = E(e−it ln Λ) = E(Λ−it)

=

m−1∏

k=1

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

) ,

where i = (−1)1/2 and t ∈ R. Taking this c.f. as a basis, we will develop
in the next subsections two near-exact and three asymptotic distributions
for W .
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3.1. Two near-exact distributions for the generalized Wilks Λ statistic

In Theorem 1 we present two near-exact distributions for the generalized
Wilks Λ statistic, in the case where at least two sets have an odd number of
variables. One of these distributions is a GNIG distribution that matches
the first three exact moments and the other is a M2GNIG distribution which
matches the first four exact moments. These distributions emerge as the di-
rect application of the procedure used by Grilo (2005) and Grilo and Coelho
(2007) to obtain two near-exact distributions for the product of particular
independent Beta r.v.’s.

Theorem 1. When, among the m sets of variables there are l sets with an
even number of variables, i.e., there are m− l sets that have an odd number
of variables, then let m − l = 2k∗, if m − l is even or m − l = 2k∗ + 1, if
m − l is odd (where k∗ =

⌊
m−l

2

⌋
is the integer part of m−l

2 ). Then, under
(??) and for a sample of size n+ 1, we may obtain two different near-exact
distributions for the r.v. W = − lnΛ. A first near-exact distribution may be
obtained in the form of a GNIG distribution of depth p = p1 +p2 + . . .+pm,

W
ne
∼GNIG(r∗1 , . . . , r

∗
p−2, r

∗
p−1, r

∗
p;λ1, . . . , λp−2, λp−1, λp)

with rate parameters

(18) λj =
n− p+ j

2
, j = 1, . . . , p− 2 ,

and shape parameters

(19) r∗j =

m−2k∗−1∑

k=1

rk,j−p∗
k
+

m−2∑

k=m−2k∗

step 2

rk,j−p∗
k
+

m−1∑

k=m−2k∗+1
step 2

r∗k,j−p∗
k
, j = 1, . . . , p−2

with p∗k =
∑k−1

l=1 pl, and

rk,j−p∗
k

= 0 if p∗k ≥ j,

r∗k,j−p∗
k

= 0 if p∗k ≥ j or j = p− 2,

where, for k=1, . . . ,m−2k∗−1 (step 1) and k = m−2k∗, . . . ,m−2 (step 2),

(20) rk j =

{
hk j j = 1, 2,

rk,j−2 + hk j j = 3, . . . , pk + qk − 2
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with

(21) hk j = (number of elements of {pk, qk} ≥ j) − 1

and for k = m− 2k∗ + 1, . . . ,m− 1 (with step 2)

(22) r∗k j =







r′k j j = 1, . . . , pk − 1,

j = pk + 2n+ 1; n = 0, . . . , qk−5
2 ,

r′k j + 1 j = pk + 2n; n = 0, . . . , qk−5
2 ,

where

(23) r′k j =







h′k j j = 1, 2,

r′k,j−2 + h′kj j = 3, . . . , pk + qk − 3

with

(24) h′k j = (number of elements of {pk − 1, qk} ≥ j) − 1

and, yet with r∗p−1 = 1, and r∗p, λp−1 and λp obtained by numeric solution
of the system of equations

(25)







µ′1 =
1

λp−1
+
r∗p
λp
,

µ′2 =
2λ2

p + 2λp−1λpr
∗
p + λ2

p−1r
∗
p(1+r∗p)

λ2
p−1λ

2
p

,

µ′3 =
6λ3

p+6λp−1λ
2
pr

∗
p+3λ2

p−1λpr
∗
p(1+r∗p)+λ

3
p−1r

∗
p(2+3r∗p+r∗2p )

λ3
p−1λ

3
p

,

where, on the first member of (??), µ′
1, µ

′
2 and µ

′
3 are the first three moments

of a Logbeta r.v. with parameters α = n
2 − 3

2 and β = 3
2 , obtained from

(??) by replacing α and β by the appropriate values, and on the second
member we have the expressions of the first three moments of the sum of
two independent Gamma r.v.’s, the first one with shape parameter r∗p−1 = 1
and rate parameter λp−1 and the second one with shape parameter r∗p and
rate parameter λp.
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The second near-exact distribution for the r.v. W = − lnΛ is a M2GNIG
distribution, where both components have depth p− 1,

W
ne
∼M2GNIG(π; r∗1, . . . , r

∗
p−2, rp−1;λ1, . . . , λp−2, λp−1|

1 − π; r∗1 , . . . , r
∗
p−2, rp−1;λ1, . . . , λp−2, λ

′
p−1)

where the shape parameters r∗1, . . . , r
∗
p−2 are given by (??) through (??) and

the rate parameters λ1, . . . , λp−2 by (??). Considering the same shape pa-
rameter rp−1 for both GNIG distributions in the mixture, we obtain π, rp−1,
λp−1 and λ′p−1 by numeric solution of the system of equations

(26)







µ′1 = π
Γ(rp−1 + 1)

Γ(rp−1)

1

λp−1
+ (1 − π)

Γ(rp−1 + 1)

Γ(rp−1)

1

λ′p−1

,

µ′2 = π
Γ(rp−1 + 2)

Γ(rp−1)

1

λ2
p−1

+ (1 − π)
Γ(rp−1 + 2)

Γ(rp−1)

1

λ′ 2p−1

,

µ′3 = π
Γ(rp−1 + 3)

Γ(rp−1)

1

λ3
p−1

+ (1 − π)
Γ(rp−1 + 3)

Γ(rp−1)

1

λ′ 3p−1

,

µ′4 = π
Γ(rp−1 + 4)

Γ(rp−1)

1

λ4
p−1

+ (1 − π)
Γ(rp−1 + 4)

Γ(rp−1)

1

λ′ 4p−1

,

where, on the first member of (??), µ′
1, µ

′
2, µ

′
3 and µ

′
4 represent the first four

moments of the sum of k∗independent and identically distributed (i.i.d.) Log-
beta r.v.’s with parameters α = n

2 − 3
2 and β = 3

2 , and in the second member
we have the first four moments of a mixture of two Gamma distributions
(M2G) with weights π and 1 − π, the first one with shape parameter rp−1

and rate parameter λp−1 and the second one with shape parameter rp−1 and
rate parameter λ′p−1.

Proof. We will consider that, without any loss of generality, the sets of
variables with an odd number of variables are, among the m sets, the last
m − l sets of variables, that is, the sets 1, . . . , l have an even number of
variables and the remaining, l+ 1, . . . ,m, have an odd number of variables.
Take k∗ =

⌊
m−l

2

⌋
with k∗ ∈ N0. Then, we may write
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φW (t) =

m−(2k∗+1)
∏

k=1

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

︸ ︷︷ ︸

pk even

×
m−2∏

k=m−2k∗

step 2

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

︸ ︷︷ ︸

qk even

×
m−1∏

k=m−(2k∗−1)

step 2

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

︸ ︷︷ ︸

pk and qk odd

,

where for the first two factors (with pk or qk even), we use the identity

p
∏

j=1

Γ
(

c+ p
2 − j

2 + b
2

)

Γ
(

c+ p
2 − j

2

) =

p+b−2
∏

j=1

(

c+
j

2
−

1

2

)rj

with c ∈ R
+ and b

2 ∈ N or p
2 ∈ N (Coelho, 1998), to rewrite the c.f. of W in

the form

φW (t) =

m−2k∗−1∏

k=1

pk+qk−2
∏

j=1

(
n− pk − qk + j

2

)rk j
(
n− pk − qk + j

2
− it

)−rk j

︸ ︷︷ ︸

pk even

×
m−2∏

k=m−2k∗

step 2

pk+qk−2
∏

j=1

(
n− pk − qk + j

2

)rk j
(
n− pk − qk + j

2
− it

)−rk j

︸ ︷︷ ︸

qk even

×
m−1∏

k=m−2k∗+1
step 2

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

︸ ︷︷ ︸

pk and qk odd
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with rkj given by (??) and (??). For the last factor, where pk and qk are
both odd, we may write

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

=
Γ
(

n
2

)

Γ
(

n
2 − it

)
Γ
(n−qk

2 − it
)

Γ
(n−qk

2

)

pk∏

j=2

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

=
Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)
Γ
(

n
2 − 3

2

)
Γ
(n−qk

2 − it
)

Γ
(n−qk

2

)
Γ
(

n
2 − 3

2 − it
)

×

pk−1
∏

j=1

Γ
(

n+1−(j+1)
2

)

Γ
(

n+1−(j+1)
2 − it

)

Γ
(

n+1−qk−(j+1)
2 − it

)

Γ
(

n+1−qk−(j+1)
2

)

=
Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

Γ
(

n−qk

2 + qk−3
2

)

Γ
(n−qk

2 − it
)

Γ
(n−qk

2

)
Γ
(

n−qk

2 + qk−3
2 − it

)

×

pk−1
∏

j=1

Γ
(

n−j
2

)

Γ
(

n−j
2 − it

)

Γ
(

n−qk−j
2 − it

)

Γ
(

n−qk−j
2

) .

Since qk is a positive odd integer and thus qk−3
2 is a positive integer, we may

use the identity,

Γ(α+ β)

Γ(α)
=

β−1
∏

j=0

(α+ j) ,

which is valid for β ∈ N and α real or complex, with α = n−qk

2 and

β = qk−3
2 , and write
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pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

=
Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

qk−3

2
−1

∏

j=0

(
n− qk

2
+ j

)(
n− qk

2
+ j − it

)−1

×

pk−1
∏

j=1

Γ
(

n−j
2

)

Γ
(

n−j
2 − it

)

Γ
(

n−qk−j
2 − it

)

Γ
(

n−qk−j
2

) ,

where, given that pk is odd, we have pk − 1 even, so that we may write

pk∏

j=1

Γ
(

n+1−j
2

)

Γ
(

n+1−j
2 − it

)

Γ
(

n+1−qk−j
2 − it

)

Γ
(

n+1−qk−j
2

)

=
Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

qk−3

2
−1

∏

j=0

(
n− qk

2
+ j

)(
n− qk

2
+ j − it

)−1

×

pk+qk−3
∏

j=1

(
n− qk − pk

2
+
j

2

)rk j
(
n− qk − pk

2
+
j

2
− it

)−rk j

=
Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

pk+qk−3
∏

j=1

(
n− qk − pk

2
+
j

2

)r∗
k j

(
n− qk − pk

2
+
j

2
− it

)−r∗
k j

with rk j (k = m− 2k∗ + 1,m − 2k∗ + 3, . . . ,m − 1; j = 1, . . . , pk + qk − 3)
and r∗k j given by (??) through (??). We may thus rewrite the c.f. of W, as
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(27)

φW (t)

=

m−2k∗−1∏

k=1

pk+qk−2
∏

j=1

(
n− pk − qk + j

2

)rk j
(
n− pk − qk + j

2
− it

)−rk j

×
m−2∏

k=m−2k∗

step 2

pk+qk−2
∏

j=1

(
n− pk − qk + j

2

)rk j
(
n− pk − qk + j

2
− it

)−rk j

×

m−1∏

k=m−2k∗+1
step 2







Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

pk+qk−3
∏

j=1

(
n− pk − qk + j

2

)r∗
k j

(
n− pk − qk + j

2
− it

)−r∗
k j

}

=

m−2k∗−1∏

k=1

pk+qk−2
∏

j=1

(
n− pk − qk + j

2

)rk j
(
n− pk − qk + j

2
− it

)−rk j

×

m−2∏

k=m−2k∗

step 2

pk+qk−2
∏

j=1

(
n− pk − qk + j

2

)rk j
(
n− pk − qk + j

2
− it

)−rk j

×
m−1∏

k=m−2k∗+1
step 2

pk+qk−3
∏

j=1

(
n− pk − qk + j

2

)r∗
k j
(
n− pk − qk + j

2
− it

)−r∗
k j

×

{

Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

}k∗

=

{

Γ
(

n
2

)
Γ
(

n
2 − 3

2 − it
)

Γ
(

n
2 − 3

2

)
Γ
(

n
2 − it

)

}k∗

p−2
∏

j=1

(
n− p+ j

2

)r∗j
(
n− p+ j

2
− it

)−r∗j

,
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where r∗j are given by (??). In (??), we will replace the c.f. of a Logbeta

r.v. with parameters n
2 − 3

2 and 3
2 , by the c.f. of the sum of two Gamma

r.v.’s,

λp−1(λp−1 − it)−1λ
r∗p
p (λp − it)−r∗p ,

where the parameters r∗p, λp−1 and λp are obtained in such a way that the
first three derivatives of both c.f.’s with respect to t, at t = 0, are equal.
This means that the distributions to which they correspond will have the
same first three moments. This leads us to obtain such parameters as the
solutions of the system of equations (??).

The expression of the near-exact c.f. of W obtained in this way is of
the type in (??), more precisely, it is given by

(28)

{

λp−1(λp−1 − it)−1 λ
r∗p
p (λp − it)−r∗p

}k∗

×

p−2
∏

j=1

(
n− p+ j

2

)r∗j
(
n− p+ j

2
− it

)−r∗j

= λk∗

p−1(λp−1 − it)−k∗

λ
k∗r∗p
p (λp − it)−k∗r∗p

×

p−2
∏

j=1

(
n− p+ j

2

)r∗j
(
n− p+ j

2
− it

)−r∗j

,

that is the c.f. of a r.v. with a GNIG distribution of depth p, whose first
three moments will match the first three moments of the exact distribution.
More precisely, (??) is the product of the c.f. of the sum of p−2 independent
r.v.’s with Gamma distribution, which corresponds to a GIG distribution of
depth p−2, with shape parameters r∗j given by (??) and rate parameters λj

given by (??), by the c.f. of the sum of two independent r.v.’s with Gamma
distribution, with shape parameters k∗ ∈ N and k∗r∗p and rate parameters
λp−1 and λp. Thus, the c.f. in (??) is the c.f. of the sum of a r.v. with
a GIG distribution of depth p − 2 with a r.v. with a GNIG distribution of
depth 2, yielding a GNIG distribution of depth p.

We may obtain another near-exact c.f. if, in (??), we replace the part
that corresponds to the sum of k∗ i.i.d. r.v.’s with a Logbeta distribution
with parameters n

2 − 3
2 and 3

2 by the c.f. of a M2G distribution with equal
shape parameters, rp−1, and rate parameters λp−1 and λ′p−1, i.e.,
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π
λ

rp−1

p−1

(λp−1 − it)rp−1
+ (1 − π)

λ
′ rp−1

p−1

(λ′p−1 − it)rp−1
,

where the parameters π, rp−1, λp−1 and λ′p−1 are obtained in such a way
that the first four derivatives of both functions with respect to t, at t = 0,
are equal. That is, the first four moments of the exact and near-exact
distributions of W will be the same. Such parameters are obtained as the
solution of the system of equations in (??).

The expression of the near-exact c.f. of W is then given by

(29)

{

π
λ

rp−1

p−1

(λp−1 − it)rp−1
+ (1 − π)

λ
′ rp−1

p−1

(λ′p−1 − it)rp−1

}

×

p−2
∏

j=1

(
n− p+ j

2

)r∗j
(
n− p+ j

2
− it

)−r∗j

,

that is the product of the c.f. of the sum of p− 2 independents r.v.’s with
Gamma distributions, which corresponds to a GIG distribution of depth p−2
(with shape parameters r∗j given by (??) and rate parameters λj given by
(??)), by the c.f. of a M2G distribution with both shape parameters equal
to rp−1 and rate parameters λp−1 and λ′p−1, and weights π and 1 − π. In
other words, (??) is thus the c.f. of the sum of a r.v. with a GIG distribution
of depth p− 2 with a r.v. with a M2G distribution, or yet, the c.f. of a r.v.
with a M2GNIG distribution of depth p−1, which, by construction, matches
the first four moments of the exact distribution.

The expressions for the near-exact density and cumulative distribution
functions of W = − lnΛ may be obtained from (??) and (??), respectively,
by making the appropriate replacement of parameters. From these we may
easily derive, by simple transformation, the corresponding near-exact density
and cumulative distribution functions for the generalized Wilks Λ statistic.
This way we obtain, for the first near-exact distribution in Theorem 1

fΛ(u) ≈ Kλ
r∗p
p

p−1
∑

j=1

uλj

r∗j∑

k=1

cj,k
Γ(k)

Γ(k + r∗p)
(− lnu)k+r∗p−1

× 1F1(r
∗
p, k + r∗p, (λp − λj) ln u), (u > 0),

as near-exact p.d.f. for Λ, and
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FΛ(u) ≈ 1 − λ
r∗p
p

(− lnu)r∗p

Γ(r∗p + 1)
1F1(r

∗
p, r

∗
p + 1, λp lnu)

+Kλ
r∗p
p

p−1
∑

j=1

uλj

r∗j∑

k=1

c∗j,k

k−1∑

i=0

(− lnu)r∗p+iλi
j

Γ(r∗p + 1 + i)

× 1F1(r
∗
p, r

∗
p + 1 + i, (λp − λj) lnu), (u > 0) ,

as near-exact c.d.f., with

K =

p−1
∏

j=1

λ
r∗j
j and c∗j,k =

cj,k

λk
j

Γ(k),

while for the second near-exact distribution in Theorem 1, we have

fΛ(u) ≈ πKλ
rp−1

p−1

p−2
∑

j=1

uλj

r∗j∑

k=1

cj,k
Γ(k)

Γ(k + rp−1)
(− lnu)k+rp−1−1

× 1F1(rp−1, k + rp−1, (λp−1 − λj) lnu)

+ (1 − π)Kλ
′ rp−1

p−1

p−2
∑

j=1

uλj

r∗j∑

k=1

cj,k
Γ(k)

Γ(k + rp−1)
(− lnu)k+rp−1−1

× 1F1(rp−1, k + rp−1, (λ
′
p−1 − λj) lnu), (u > 0),

as the near-exact p.d.f. for Λ, and

FΛ(u) ≈ 1 − π λ
rp−1

p−1

(− lnu)rp−1

Γ(rp−1 + 1)
1F1(rp−1, rp−1 + 1, λp−1 lnu)

+Kλ
rp−1

p−1

p−2
∑

j=1

uλj

r∗j∑

k=1

c∗j,k

k−1∑

i=0

(− lnu)rp−1+iλi
j

Γ(rp−1 + 1 + i)

× 1F1(rp−1, rp−1 + 1 + i, (λp−1 − λj) ln u)
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− (1 − π)λ
′ rp−1

p−1

(− lnu)rp−1

Γ(rp−1 + 1)
1F1(rp−1, rp−1 + 1, λ′p−1 lnu)

+ (1 − π)Kλ
′ rp−1

p−1

p−2
∑

j=1

uλj

r∗j∑

k=1

c∗j,k

k−1∑

i=0

(− lnu)rp−1+iλi
j

Γ(rp−1 + 1 + i)

× 1F1(rp−1, rp−1 + 1 + i, (λ′p−1 − λj) lnu), (u > 0),

as the near-exact c.d.f. of Λ, with

K =

p−2
∏

j=1

λ
r∗j
j and c∗j,k =

cj,k

λk
j

Γ(k).

Based on the c.d.f.’s presented it is quite easy to compute near-exact
quantiles.

3.2. Asymptotic distributions for the generalized Wilks Λ statistic

As approximations for the generalized Wilks Λ statistic we also consider the
asymptotic distribution proposed by Box (1949) and Anderson (2003) and
three asymptotic distributions developed by us, which match some of the
first exact moments.

3.2.1. Box-Anderson asymptotic distribution for the statistic W =−lnΛ

Box (1949) and Anderson (2003, Section 9.4 of Chapter 9) developed two
well-known asymptotic distributions for linear transformations of the loga-
rithm of the Wilks Λ statistic, under the null hypotheses of independence
of the m sets of variables. These are based on series expansions which use
Chi-square distributions. As we can see in Appendix A, the two asymptotic
distributions proposed by the two authors agree to terms of order η−2, with
η given by (??).

Based on the results obtained by those two authors we will use, as
asymptotic approximation for the distribution of the r.v. V2 = ηW, a mix-
ture of two Chi-square distributions, i.e., we will use (see Appendix A)

(30) φV2
(t) ∼=

(

1 −
γ2

η2

)

φχ2
f
(t) +

γ2

η2
φχ2

f+4
(t),
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where

γ2 =
S4

48
−

5

96
S2 −

(S3)
2

72S2
=

p4 −

m∑

k=1

p4
k

48
−

5

(

p2 −

m∑

k=1

p2
k

)

96

−

(

p3 −

m∑

k=1

p3
k

)2

72

(

p2 −

m∑

k=1

p2
k

) ,

(31) η = n+ 1 −
9S2 + 2S3

6S2

and

φχ2
f
(t) =

(
1

2

)f
2
(

1

2
− it

)−
f
2

is the c.f. of a r.v. with a Chi-square distribution with f degrees of freedom.
Since we have

φW (t) = E(eitW ) = E(ei(t/η)V ),

the use of (??), is equivalent to the use, for the c.f. of the r.v. W = −lnΛ,
of the approximation

(32) φW (t) ∼=

(

1 −
γ2

η2

)

φχ2
f

(
t
η

)

+
γ2

η2
φχ2

f+4

(
t
η

)

.

We will call the asymptotic distribution derived from (??) the Box-Anderson
distribution.

3.2.2. Asymptotic distributions for the statistic W = − lnΛ which equate

moments

We will also approximate the whole c.f., φW (t) in (??), by the c.f. of a
Gamma r.v., by the c.f. of a GNIG r.v. with depth 2 with c.f.

λp−1(λp−1 − it)−1λ
r∗p
p (λp − it)−r∗p
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or by the c.f. of a M2G distribution (with both components with the same
shape parameters). The approximation is done in such a way that if these
approximating c.f.’s have d parameters, their first d derivatives with respect
to t, at t = 0, will match the corresponding first d derivatives of φW (t) with
respect to t, at t = 0. The asymptotic distributions obtained in this way
are: a Gamma, a GNIG and a M2G distribution, which match the first two,
three and four exact moments, respectively.

4. Comparative numerical studies

To assess the performance of the asymptotic and near-exact distributions
proposed we use two proximity measures, based on the difference between
the exact and asymptotic or near-exact c.f.’s. These measures were used by
Grilo and Coelho (2007) and they are directly derived from the inversion
formulas respectively for the p.d.f. and the c.d.f.. Their expressions are

∆1 =
1

2π

∫ +∞

−∞

|φW (t) − φ(t)| dt

and

(33) ∆2 =
1

2π

∫ +∞

−∞

∣
∣
∣
∣

φW (t) − φ(t)

t

∣
∣
∣
∣
dt,

where φW (t) represents the exact c.f. of the r.v. W and φ(t) the approxi-
mate (asymptotic or near-exact) c.f., corresponding to the distribution under
study. The measure ∆2 in (??) may be seen as directly derived from the
Berry-Esseen bound and the use of the measures ∆1 and ∆2 enables us to
obtain upper bounds on the absolute value of the differences of the density
and the cumulative distribution functions, respectively. More precisely,

max
w>0

|fW (w) − f(w)| ≤ ∆1 and max
w>0

|FW (w) − F (w)| ≤ ∆2 ,

where fW (w) and FW (w) are, respectively, the exact p.d.f. and c.d.f. of W,
evaluated at w > 0, and f(w) and F (w) are, respectively, the asymptotic or
near-exact p.d.f. and c.d.f. of W. The proposed measures are an important
tool to assess the proximity between asymptotic or near-exact distributions
and exact distributions, mainly in cases where the expressions for the ex-
act p.d.f. or c.d.f. are not known, or being known they are so complicated
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that they are not manageable. This way, smaller values of the measures are
associated with better closeness of the distributions (in terms of moments,
quantiles and c.f., and as such also in terms of density and cumulative dis-
tribution functions). The measures ∆1 and ∆2 are accurate to evaluate the
proximity of quantiles, with smaller values of these measures being associ-
ated with smaller differences among quantiles (see Grilo and Coelho, 2007,
2010).

In this stage we perform a comparative numerical study among the
approximations proposed. We consider four asymptotic distributions: the
Box-Anderson which does not equate any moments (Box, 1949; Anderson,
2003), a Gamma, a GNIG and a M2G, which equate the first two, three
and four exact moments, respectively (developed according to Subsection
3.2.2); and three near-exact distributions: a GNIG which equates two exact
moments (Coelho, 2004), a GNIG and a M2GNIG which equate the first
three and four exact moments, respectively (developed in Subsection 3.1).
These approximations and the number of exact moments they match are
shown in Table 1.

Table 1. Asymptotic and near-exact distributions and the number of exact

moments equated.

Distributions
No. of moments

equated

Box-Anderson 0

Gamma 2
Asymptotic

GNIG 3

M2G 4

GNIG 2
Near-

GNIG 3-exact

M2GNIG 4

We will use the measures ∆1 and ∆2 to assess the proximity of the different
distributions, for variations in the number of sets (m), in the number of
variables per set (pk) and in the sample size (n). In Table 2 is displayed a
summary of the cases considered in the comparative study.
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Table 2. Number of sets, number of variables per set and sample size.

No. of No. of variables Total no. Sample

sets per set of variables size

p1 = 5, p2 = 7, p3 = 3 p = 15
m = 3 p1 = 5, p2 = 7, p3 = 9 p = 21

n = 25

and

m = 4 p1 = 5, p2 = 7, p3 = 3, p4 = 6 p = 21 n = 100

In Tables 3 through 5 we may see how, opposite to the asymptotic
distributions, the near-exact distributions show an asymptotic behavior also
for an increasing number of variables, not only in terms of increasing values
of pk, when keeping m unchanged, but also for increasing m, keeping p =
p1 + p2 + . . .+ pm unchanged.

As expected, the values of the proximity measures decline with increas-
ing values of the sample size both for the asymptotic and near-exact distri-
butions. Also, systematically, distributions that equate a larger number of
exact moments have lower values of the proximity measures. Both for the
asymptotic and near-exact distributions we have with lower values of mea-
sures the two approximations based on mixtures: the M2G in the case of
asymptotic distributions and the M2GNIG in the case of near-exact distribu-
tions. We may note that both distributions match four exact moments, but
the near-exact distribution has always lower values of the proximity mea-
sures. The asymptotic distribution Box-Anderson, which does not equate
any moment, has almost always the highest values for the proximity mea-
sures, mainly for smaller sample sizes.

In a more detailed comparative analysis between asymptotic and near-
exact distributions, we may see that the best asymptotic distribution (the
M2G distribution, which equates four exact moments) is always worse than
the least performant near-exact distribution (the GNIG distribution, which
equates two moments). The difference is more visible for smaller sam-
ples, what therefore enhances the advantage of the near-exact distributions
over the asymptotic, with regard to smaller samples. For large samples
the asymptotic distributions have a relative improvement in the quality of
approximation which is however not enough to beat the near-exact distri-
butions. In addition, when the difference n − p decreases, the near-exact
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distributions are still much closer to the exact distribution, even when the
number of sets of variables increases (compare the values of proximity mea-
sures between distributions in Tables 3 and 5).

For the same sample size, an increase in the total number of variables
leads to an increase in the values of the proximity measures for the asymp-
totic distributions. This instability of asymptotic distributions contrasts
with the behavior of near-exact distributions, whose values of proximity
measures decrease in this case (compare, for example, Tables 3 and 4). The
near-exact distributions always have a better performance than the asymp-
totic ones. They lay closer to the exact distribution than the asymptotic
ones, namely for smaller sample sizes.

Some quantiles, for the distributions and cases in Tables 3 through 5,
are presented in Appendix B, where we consider the first fifteen decimal
places of quantiles to assess the precision and performance of the approxi-
mations proposed. Note that smaller values of the proximity measures are
generally associated with smaller differences between the exact and approx-
imate quantiles. Thus, although we do not have the exact quantiles for the
examples presented, we can compare the quantiles of different approxima-
tions with the quantiles of the near-exact distribution M2GNIG (for n = 25
or n = 100), since this approximation has lower values of ∆1 and ∆2.

Table 3. Values of measures ∆1 and ∆2 for asymptotic and near-exact

distributions. Case m = 3 with p1 = 5, p2 = 7, p3 = 3; n = 25

and n = 100.

Proximity measures

Distributions n = 25 n = 100

∆1 ∆2 ∆1 ∆2

Box-Anderson(0 m.) 8.815E-02 1.063E-02 1.104E-03 2.844E-05

Gamma(2 m.) 1.371E-02 9.355E-04 2.112E-03 2.620E-05
Asymptotic

GNIG(3 m.) 1.914E-03 1.122E-04 5.029E-04 5.225E-06

M2G(4 m.) 3.370E-04 1.896E-05 2.053E-06 1.909E-08

GNIG(2 m.) 8.356E-07 5.566E-08 5.581E-07 6.898E-09
Near-

GNIG(3 m.) 2.244E-08 1.262E-09 3.168E-09 3.320E-11-exact

M2GNIG(4 m.) 6.369E-11 3.135E-12 3.163E-12 7.082E-15
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Table 4. Values of measures ∆1 and ∆2 for asymptotic and near-exact

distributions. Case m = 3 with p1 = 5, p2 = 7, p3 = 9; n = 25

and n = 100.

Proximity measures

Distributions n = 25 n = 100

∆1 ∆2 ∆1 ∆2

Box-Anderson(0 m.) 7.795E-01 1.151E-01 4.538E-03 1.597E-04

Gamma(2 m.) 2.435E-02 3.214E-03 2.114E-03 3.905E-05
Asymptotic

GNIG(3 m.) 4.797E-03 5.451E-04 1.126E-04 1.772E-06

M2G(4 m.) 1.965E-03 1.944E-04 4.096E-06 5.674E-08

GNIG(2 m.) 6.385E-08 8.140E-09 1.182E-07 2.178E-09
Near-

GNIG(3 m.) 9.273E-10 9.942E-11 4.631E-10 7.235E-12-exact

M2GNIG(4 m.) 1.416E-12 1.328E-13 3.200E-13 1.299E-14

Table 5. Values of measures ∆1 and ∆2 for asymptotic and near-exact

distributions. Case m = 4 with p1 = 5, p2 = 7, p3 = 3, p4 = 6;

n = 25 and n = 100.

Proximity measures

Distributions n = 25 n = 100

∆1 ∆2 ∆1 ∆2

Box-Anderson(0 m.) 8.331E-01 1.673E-01 5.865E-03 2.224E-04

Gamma(2 m.) 2.352E-02 3.190E-03 1.956E-03 3.819E-05
Asymptotic

GNIG(3 m.) 4.663E-03 5.444E-04 1.044E-04 1.736E-06

M2G(4 m.) 1.907E-03 1.937E-04 3.872E-06 5.669E-08

GNIG(2 m.) 5.712E-08 7.500E-09 9.509E-08 1.852E-09
Near-

GNIG(3 m.) 8.052E-10 8.900E-11 3.532E-10 5.834E-12-exact

M2GNIG(4 m.) 1.192E-12 2.077E-14 2.310E-13 9.125E-15
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5. Conclusions and final remarks

The near-exact distributions developed are very close to the exact distribu-
tion and although some of the general expressions obtained for the c.d.f.’s
may seem complicated, they are, in fact, very manageable and easily allow
for the calculation of near-exact quantiles and p-values through the use of
a symbolic software. Note that even when we have the expressions for the
exact p.d.f.’s and c.d.f.’s available from the literature, these are usually only
available for specific numbers of variables per set and the expressions are
highly complex, since they make use of unsolved integrals and/or series,
which render the computation of exact quantiles impossible.

The comparative analysis conducted allowed us to confirm and reinforce
the importance of near-exact distributions over the asymptotic ones. Even
when we compare asymptotic and near-exact distributions that equate the
same number of exact moments we confirm that the near-exact distributions
are always closer to the exact distribution. The near-exact distributions are
still very close to the exact distribution when the difference between the
sample size and the total number of variables, n − p, is very small, which
is the usual situation where asymptotic distributions work less well. The
near-exact distributions developed also display an asymptotic behavior for
increasing number of variables.

Among the near-exact distributions considered for the Wilks Λ statistic,
for the general case of several sets of variables, the near-exact M2GNIG dis-
tribution is the one that allows for the computation of near-exact quantiles
closer to the exact ones. So if we want more accuracy, the near-exact distri-
butions, expressed under the form of mixtures, are the best option, because
they lie closer to the exact distribution.

The procedure used in this paper may also be applied to obtain near-
exact distributions for other likelihood ratio test statistics, used in several
multivariate tests, as well as other statistic tests whose exact distributions
are usually seen as hard to obtain in a manageable form.

Appendix

A. Box and Anderson asymptotic distributions for the generalized Wilks

Λ statistic

In this appendix we present the asymptotic distributions of Box (1949) and
Anderson (2003) for the statistic W = − lnΛ and the fact that these two
approaches match by terms of certain order.
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A.1. Asymptotic distribution of Box for the statistic W = − ln Λ

Box (1949) obtained an asymptotic distribution for the statistic V1 = µW
(µ > 0), for the general case of m sets of variables, for a sample size of n+1,
based on a series expansion until terms of order µ−2. After some simple
manipulation we get an approximation to the c.d.f. of the r.v. V1 in the
form of

(34) P (V1 ≤ v) ∼=

(

1 −
α2

µ2

)

P (χ2
f ≤ v) +

α2

µ2
P (χ2

f+4 ≤ v),

where χ2
f is a r.v. with Chi-square distribution with f degrees of freedom

and where

α2 = α′
2 − α′

1β +
f

4
β2

with

(35)







α′
1 = 1

24(2S3 + 3S2)

α′
2 = 1

48(S4 + 2S3 − S2)
,

where

Si =

(
m∑

k=1

pk

)i

−
m∑

k=1

pi
k = pi −

m∑

k=1

pi
k ,

where pk represents the number of variables in the k-th set, and

(36) f =
1

2
S2

and where, according to Box (1949), the best choice for β is

(37) β =
2S3 + 3S2

6S2
.

Under these circumstances, µ is given by µ = n− β = n− 2S3+3S2

6S2
.

A.2. Asymptotic distribution of Anderson for the statistic W = − lnΛ

Anderson (2003) obtained an asymptotic distribution for the statistic V2 =
ηW , also for the general case of m sets of variables, for a sample size n+ 1,
which gives as c.d.f. for the r.v. V2,

P (V2 ≤ v) =

(

1 −
γ2

η2

)

P (χ2
f ≤ v) +

γ2

η2
P (χ2

f+4 ≤ v) +O(η−3),
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where χ2
f is a r.v. with Chi-square distribution with f degrees of freedom,

with f given by (??), and where

η = n+ 1 −
9S2 + 2S3

6S2

and

γ2 =
S4

48
−

5

96
S2−

(S3)
2

72S2
=

p4 −
m∑

k=1

p4
k

48
−

5

(

p2 −
m∑

k=1

p2
k

)

96
−

(

p3 −
m∑

k=1

p3
k

)2

72

(

p2 −
m∑

k=1

p2
k

)

with

p =

m∑

k=1

pk .

This distribution agrees, until terms of order η−2, with the distribution in
(??). We just have to prove that η = µ and γ2 = α2.

In fact,

η = n+ 1 −
9S2 + 2S3

6S2
= n−

2S3 + 3S2

6S2
= µ

while, given the definition of α′
1 and α′

2 in (??) and taking into account (??)
and (??), we have

α2 =
S4 + 2S3 − S2

48
−

2S3 + 3S2

24

(
2S3 + 3S2

6S2

)

+
S2

8

(
2S3 + 3S2

6S2

)2

=
S4 + 2S3 − S2

48
−

4(S3)
2 + 12S2S3 + 9(S2)

2

288S2

=
S4

48
−

5

96
S2 −

(S3)
2

72S2
= γ2.

Appendix

B. Some quantiles of asymptotic and near-exact distributions

In this appendix we have some quantiles for the asymptotic and near-exact
distributions presented in Table 1, and for the cases considered in Table 2.
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Table B.1. Some quantiles of asymptotic and near-exact distributions, for m = 3 with p1 = 5, p2 = 7,

p3 = 3 and n = 25.

Quantile
Distributions

0.90 0.95 0.99

Box-Anderson(0 m.) 5.031785461796158 5.323031958069611 5.898005586512672
Gamma(2 m.) 5.070377562043812 5.370357926673817 5.963786660003066

Asymptotic
GNIG(3 m.) 5.070276333237788 5.372126647829524 5.971982498923960
M2G(4 m.) 5.070609220349255 5.372523848045243 5.971819900646903

GNIG(2 m.) 5.070602168477183 5.372467807060278 5.971703926691035
Near- GNIG(3 m.) 5.070602124092140 5.372467665422931 5.971703537687081-exact

M2GNIG(4 m.) 5.070602126798732 5.372467667053351 5.971703532349906

Table B.2. Some quantiles of asymptotic and near-exact distributions, for m = 3 with p1 = 5, p2 = 7,

p3 = 3 and n = 100.

Quantile
Distributions

0.90 0.95 0.99

Box-Anderson(0 m.) 0.935323168711130 0.989715419238025 1.097231449665216
Gamma(2 m.) 0.935339192611802 0.989726082542498 1.097223554713795

Asymptotic GNIG(3 m.) 0.935342850877693 0.989738547373362 1.097259383804981
M2G(4 m.) 0.935340711254230 0.989737150205773 1.097263392208844

GNIG(2 m.) 0.935340709285214 0.989737142448385 1.097263384191019
Near-

GNIG(3 m.) 0.935340708748366 0.989737139450099 1.097263374024131-exact
M2GNIG(4 m.) 0.935340708764024 0.989737139462930 1.097263374001226
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83 Table B.3. Some quantiles of asymptotic and near-exact distributions, for m = 3 with p1 = 5, p2 = 7,

p3 = 9 and n = 25.

Quantile
Distributions

0.90 0.95 0.99

Box-Anderson(0 m.) 11.591586686879699 12.032350722190023 12.898414250694641
Gamma(2 m.) 12.345918745169811 12.896339241630456 13.971712356540501

Asymptotic GNIG(3 m.) 12.348171464976944 12.912166618988656 14.027008354299709
M2G(4 m.) 12.348171464976944 12.912166618988656 14.027008354299709

GNIG(2 m.) 12.348022879983701 12.910964952132374 14.024583596099380
Near- GNIG(3 m.) 12.348022863197591 12.910964910723551 14.024583497919487
-exact

M2GNIG(4 m.) 12.348022863501334 12.910964910801998 14.024583497046136

Table B.4. Some quantiles of asymptotic and near-exact distributions, for m = 3 with p1 = 5, p2 = 7,

p3 = 9 and n = 100.

Quantile
Distributions

0.90 0.95 0.99

Box-Anderson(0 m.) 1.836423568798852 1.912728356791496 2.061422164719888
Gamma(2 m.) 1.836561835231905 1.912879136056215 2.061589621633479

Asymptotic GNIG(3 m.) 1.836566487919830 1.912904876661781 2.061678211637670
M2G(4 m.) 1.836567768617353 1.912905919850552 2.061676226936147

GNIG(2 m.) 1.836567748918097 1.912905868635871 2.061676170614511
Near- GNIG(3 m.) 1.836567748527033 1.912905867113034 2.061676165947668
-exact

M2GNIG(4 m.) 1.836567748531739 1.912905867116187 2.061676165938647
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Table B.5. Some quantiles of asymptotic and near-exact distributions, for m = 4 with p1 = 5, p2 = 7,

p3 = 3, p4 = 6 and n = 25.

Quantile
Distributions

0.90 0.95 0.99

Box-Anderson(0 m.) 12.460941411465933 12.907514159294704 13.783900618858366
Gamma(2 m.) 13.296058071513843 13.856824747820833 14.950117240148249

Asymptotic GNIG(3 m.) 13.295201884762036 13.868568563988037 15.006772567048699
M2G(4 m.) 13.298577869482085 13.873174216085569 15.006387007465356

GNIG(2 m.) 13.298396069376416 13.871917301706467 15.003950051538756
Near- GNIG(3 m.) 13.298396053550118 13.871917262268838 15.003949957231221
-exact

M2GNIG(4 m.) 13.298396053835702 13.871917262346372 15.003949956414496

Table B.6. Some quantiles of asymptotic and near-exact distributions, for m = 4 with p1 = 5, p2 = 7,

p3 = 3, p4 = 6 and n = 100.

Quantile
Distributions

0.90 0.95 0.99

Box-Anderson(0 m.) 2.039136431292056 2.119137075841269 2.274715205452883
Gamma(2 m.) 2.039331328087639 2.119352060184476 2.274962859788668

Asymptotic GNIG(3 m.) 2.039336486121450 2.119378976623912 2.275054213119008
M2G(4 m.) 2.039337803157476 2.119380026799260 2.275052099885275

GNIG(2 m.) 2.039337781112693 2.119379971964562 2.275052042593969
Near- GNIG(3 m.) 2.039337780749925 2.119379970585481 2.275052038400520
-exact

M2GNIG(4 m.) 2.039337780753908 2.119379970588093 2.275052038392689
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