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Abstract

In analysing a well known data set from the literature which can
be thought of as a two-way layout it transpires that a robust adaptive
regression approach for identifying outliers fails to be sensitive enough
to detect the possible interchange of two observations. On the other
hand if one takes the classical approach of diagnostic checking one may
also stop too early and be satisfied with a model that falls short of a
more detailed analysis that takes account of heteroscedasticity in the
data. An exact F-test for heteroscedasticity in the two way layout
is compared with various more general tests proposed by Shukla. In
conclusion it is noted that when modelling the particular form of het-
eroscedasticity countenanced here, the estimated column effects are
unchanged from those estimated from the model assuming homoge-
neous error variance structure. It is only the estimated variances of
these column effects that changes.
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1. Introduction

In this paper we discuss questions relating to the analysis of the two-way
layout with one observation per cell. The linear model is formulated for
example by letting the observation in the (i, j)th cell be represented by a
random variable Yij = µ + αi + βj + eij (i = 1, ..., r; j = 1, ..., s). Here
µ, αi and βj are the general mean and the effects of the ith row and the jth
column, respectively, eij represents the error associated with the (i, j)th cell,
and we assume for the present that the eij are independent and normally
distributed, eij ∼ N(0, σ2). The row effects and column effects are assumed
to sum to zero respectively. By analysing a well known data set of Immer et
al. summarized in R.A. Fisher’s book “Design of Experiments” (1949, p. 66)
we illustrate that the robust outlier detection method in regression discussed
of Clarke (2000) may not be sensitive enough to identify potential outliers
in the two-way layout, even though this method works extremely well on
other known data sets in regression. For example Daniel (1976, p. 159)
identifies two observations as possibly being interchanged for years. While
one of these observations is highlighted by the method in Clarke (2000) it
is not identified as an outlier. The reader who follows up the data laid out
in Fisher’s book may see that there are observations on yield for each of
two years at six different locations for five varieties of barley. Allowing for
a fixed effects design and possible interactions between locations and years
gives a 12× 5 two-way layout. The interest here is primarily in yield for the
five varieties of barley and thus we consider a fixed effects model.

Assuming Daniel is correct and interchanging the two observations, a
half-normal plot of the residuals indicates the two-way fixed effects model
is a good fit. However, this also is a fallacy, for we note that four of the
five largest absolute residuals belong to one variety Trebi The consequent
analysis showing that variety Trebi is indeed having a larger error variance is
discussed in Clarke and Godolphin (1992, pp. 2520–2522). There it is also
noted that the associated F-statistic for testing heteroscedasticity, in this
case where variety Trebi has increased variance and the other varieties have
a common error structure, is in fact optimal, as it is equivalent to an exact
likelihood ratio test based on the error contrasts (see Clarke and Godolphin
1992, §7.).

A more general F-statistic can be written down for testing where nor-
mal errors for say the first s − l columns of the two-way layout have error
variance σ2 and the remaining normal errors, say in the last l columns have
error variance λ2. It is unknown whether this statistic is optimal when
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2 ≤ l ≤ s − 2, but all indications from the empirical analysis of power
given in this paper suggest this is so. We compare the given statistic with
more general tests of heteroscedasticity illustrating superior performance of
the former when the particular error structure we have described here holds.
Various tests of heteroscedaticity given in Shukla (1972, 1982) are compared
for type I error and power.

Finally, it is a curious phenomenon that when considering the alterna-
tive error variance structure given above, that the estimated column effects
are unchanged, while the row effects do change. While the estimated column
effects do not change under the alternative covariance structure their esti-
mated variances do change and this was demonstrated in Table II in Clarke
and Godolphin (1992). The theory of considering when least squares esti-
mates (which assume a covariance matrix of σ2 times the identity matrix),
are equal to the generalized least squares estimates (assuming an alterna-
tive covariance structure) is discussed in Puntanen and Styan (1989). In
our paper we have an example where only a partition of the least squares
estimator is unchanged when going from the least squares estimator to the
generalized least squares estimator under a more general covariance matrix.
Visualise, the column effects are unchanged whereas the row effects alter.

2. The robust adaptive approach

If Cuthbert Daniel is correct then in ordering the observations column by
column from the two-way layout, then observations 33 and 34 in the vec-
tor of observations Y should appear as outliers. The approach taken in
Clarke (2000) to identify outliers in regression was to minimize an estimated
asymptotic variance of the trimmed likelihood estimator. Letting Vn(g) be
the objective function given in Clarke (2000) and J̃(g) the potential outly-
ing observations we obtain Table 2.1. The value g refers to the number of
observations to be trimmed from the sample when evaluating the trimmed
likelihood with a trimming proportion α = g/n.

Table 2.1. Fisher’s practical example

g Vn(g) J̃(g)

g̃ = 0 170.6 -

1 196.8 34

2 222.1 34,53

3 240.5 20,34,44
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For this data it appears that the ATLA algorithm in Clarke (2000) does
not identify any outlying observations, viz. the preferred value of trim-
ming is g̃ = 0 observations, though observation 34 is flagged as the
first potential outlier should one exist. However observation 53 is
highlighted as the next most potentially aberrant, seemingly disqualifying
observation 33 of being so.

Behaving as if Daniel were correct and swapping the observations for
location 5 and variety Velvet leads to Table 2.2 which again highlights no
outliers. Using our approach of outlier identification we would stop here and
proceed no further in the modelling of these data.

Table 2.2. Fisher’s modified practical example

g Vn(g) J̃(g)

g̃ = 0 139.8 -

1 164.4 57

2 178.7 57,58

3 194.2 20,44,53

4 197.2 20,44,51,53

5 202.7 20.44,51,52,53

6 Computationally out of range

3. The classical approach to modelling the data

On fitting a fixed effects two-way layout design the accepted approach to
modelling is to do a diagnostic check of the residuals, for instance to see if
there is any departure from the normality assumption for the unobserved
errors. A half-normal probability plot of the estimated residuals is a typi-
cal diagnostic tool where ordered absolute residuals are plotted against the
expected values from a normal distribution. The plot below shows no sign
of significant deviation from the model normal assumption, it appearing to
not deviate greatly from a straight line. On the other hand it can be seen
that four of the five largest residuals belong to variety Trebi. For instance
variety Trebi residuals are plotted in circles. It is also noted in Clarke and
Godolphin (1992) that Trebi has the largest variety effect estimate.
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In keeping with the well known fact that increased mean values often lead to
increased variances it is then sensible to test to see if variety Trebi has a dif-
ferent error variance associated with it, and then model the data accordingly
as given in Clarke and Godolphin (1992).

Figure 1. Half-normal probability plot of residuals

4. Tests of Heteroscedasticity

4.1. An exact test of heteroscedasticity
An elegant description of the contrasts that make up the sums of squares in
a two-way design is given in Clarke (2002). The error contrasts in a two-way
layout with r rows and s columns can be conveniently written in the form

w = (Bs ⊗Br)Y,

where ⊗ represents kronecker product and the matrices Br and Bs

are respectively (r − 1) × r and (s − 1) × s partitions from the Helmert
matrices of order r and s, respectively. For example the rows of Br

and Bs are orthogonal to the unit vectors of length r and s respectively.
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See Clarke (2002) and Clarke and Godolphin (1992) for example. When
the first s − l columns of the two-way layout have error variance σ2 and
the remaining columns have error variance λ2 using Lemma 6.1 of Clarke
and Godolphin (1992) it is possible to set up an exact F-test for the null
hypothesis H0 : σ2 = λ2 versus either a one tailed or two tailed alternative.
In fact, w′ = (w′

ν1 ,w
′
ν2) and

(4.1) F =
w′

ν2wν2/ν2

w′
ν1wν1/ν1

,

where ν1 = (s− l−1)(r−1) and ν2 = l(r−1). From Theorem 6.1 of Clarke
and Godolphin (1992) the statistic F is compared with the appropriate crit-
ical point(s) of the Fisher F-distribution. The special case of this F-test
is when only the last column of the two way layout has a differing error
variance, where l = 1, and then the test corresponds to Test 2 of Russell
and Bradley (1958) and is known to be optimal as was shown in Clarke and
Godolphin (1992, §7).

4.2. Some tests of heteroscedasticity of Shukla and further variants

Shukla (1972, 1982) considered a null hypothesis of equal columnon error
variances, considered in the form of

H0 : σ2
1 = σ2

2 = ... = σ2
s

The alternative hypothesis is that the column variances are not all equal
(non-homogeneous) whence

Ha : σ2
j 6= σ2

j′ for at least one pair j 6= j′ and j, j′ = 1, 2, ..., s.

This more general alternative encompasses the particular alternative con-
sidered in the previous subsection.

In his 1972 paper Shukla considers two statistics for testing these more
general hypotheses. Then in 1982 Shukla proposes a Bartlett type test statis-
tic for testing the above hypotheses and considers several approximations to
the null distribution of the statistic. We shall not go into great detail about
these tests as the discussion of the statistics is found in Shukla’s papers.
However we list here the tests of Shukla and the tests resulting from the
above F in (4.1). In addition we consider a statistic F∼ that can be thought
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of as being formed from say splitting the r × s two-way layout into two
two-way layouts of orders r× (s− l) and r× l, evaluating the error variances
from the two two-way layouts and then letting F∼ be the resulting Fisher
F-statistic for testing equality of variances. In using the above F-statistics
we have the added option of doing a oneway or two way test, e.g. we may
consider either Ha : λ2 6= σ2 or Ha : λ2 > σ2. Clearly a one-tailed test is
more powerful at the same significance level as the two tailed test. We list
the tests below.

Table 4.1. Tests considered in later Comparisons of Power & Type I error

Test

Number Test Description

1. Sh72 Shukla’s 72 test based on Mauchly’s 1940 test of
sphericity

2. Shlrt Likelihood ratio test(asymptotic) based on error
contrasts

3. χI First approximation to Shukla’s Bartlett type
statistic

4. χII Second approximation to Shukla’s Bartlett type
statistic

5. ShF Third approximation of Shukla’s Bartlett type
statistic

6. χJ Johnson approximation as described by Shukla

7. χU Final approximation variant of Shukla 1982

8. F6= Two tailed F test from equation (4.1)

9. F∼6= Two tailed F-test using separate two-way ANOVA’s

10. F> One tailed F-test from equation (4.1)

11. F∼> One tailed F-test using separate two-way ANOVA’s

For each of these tests we carry out Type I Error and Power Comparisons
at a nominal significance level of 0.05. Naturally the Type I error of the
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F-statistics is exactly 0.05 and these therefore do not need to be included.
In the subsequent simulations we generate 4,275 samples to achieve a two
decimal point accuracy in the estimates of Type I error. The proportion
of significant test statistics is recorded in Table 4.2. It can be noted that
test Sh72 performs poorly in terms of Type I error, while the asymptotic
likelihood ratio test based on the error contrasts in Shlrt has questionable
Type I error for smaller designs. The first three approximations to Shukla’s
Bartlett type statistic perform reasonably well in terms of Type I error.
The last two approximations also lead to questionable Type I errors for
small designs.

Table 4.2. Comparison of Type I errors as measured by simulation

Design Size Sh72 Shlrt χI χII ShF χJ χU

r s

3 3 0.118 0.110 0.036 0.037 0.037 0.063 0.018

5 0.615 0.0387 0.047 0.052 0.065 0.124 0.035

10 0.803 0.495 0.053 0.058 0.058 0.270 0.052

8 3 0.072 0.059 0.051 0.059 0.053 0.061 0.023

5 0.110 0.086 0.045 0.046 0.046 0.066 0.029

10 1.000 0.578 0.045 0.045 0.045 0.079 0.043

20 3 0.056 0.052 0.038 0.052 0.019 0.043 0.017

5 0.057 0.052 0.053 0.055 0.055 0.059 0.040

10 0.0772 0.061 0.050 0.050 0.050 0.064 0.045

We now go on to look at a selection of designs plotting empirically deter-
mined power curves for a set of values l (the parameter that determines
the number of columns having error variance LAMBDA=λ2 under the al-
ternative hypothesis). The first s − l columns are simulated to have error
variance one. Figure 2 considers the power curves for a 3 × 5 design with
l = 2 for which tests with adequate Type I error (in the range (0.04, 0.06))
are compared. All the F-statistics excel in terms of power curves. Shukla’s
approximations come a poor second.
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Figure 2. Estimated power curves for the 3× 5 design with l = 2

Figure 3. Estimated power curves for the 3× 10 design with l = 3
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Figure 4. Estimated power curves for the 8× 10 design with l = 3

Figure 5. Estimated power curves for the 20× 5 design with l = 2
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In Figure 3 a 3 × 10 design with l = 3 again showed the F-tests are much
more powerful than the statistics based on Shukla’s approximations of the
sistribution of the Bartlett type statistic. The test statistics formulated from
the construction first proposed in Clarke and Godolphin (1992) are then the
most powerful. Considering an 8× 10 design with l = 3 Figure 4 shows that
the F-tests are better in terms of power. Finally in Figure 5 when consid-
ering a 20× 5 design with l = 2, since all the tests are adequate in terms of
Type I error all are included in the graph. Note that the asymptotic likeli-
hood ratio test performs the best but is indistinguishable from the F-tests
formulated from Clarke and Godolphin (1992).

This last figure begs the question as to whether or not the F-test of
Clarke and Godolphin (1992) is equivalent to the exact likelihood ratio test
based on the error contrasts when 2 ≤ l ≤ s − 2. That is, is it the most
powerful test? It has already been shown to be the case when l = 1. For
the more general case it is an open question.

5. Equivalence of least squares
and generalized least squares estimates

The usual approach to fitting the fixed effect parameters under the alterna-
tive error structure is to first find estimates of the error variance parameters,
say σ̃2 and λ̃2, based on the error contrasts. This leads to an estimated co-
variance matrix of the errors Σ̃ from which the fixed effects parameters are
then estimated via say generalized least squares where

β̂GLS = (X′Σ̃−1X)−X′Σ̃−1Y ,

where X is the design matrix and Σ̃ is the estimated covariance matrix. It
can be shown analytically in the case l = 1 that none of the column fixed
effect parameters are changed from the least squares counterparts. The
only change is in the estimated error variances of the column effects. Using
numerical examples this also appears to be the case for 2 ≤ l ≤ s − 2.
The row fixed effects do change under the alternative error structure. This
curious result may be reflected more widely, e.g. it may be Σ = σ2V and
the particular generalized least squares estimator

β̂GLS =

(
β̂1,GLS

β̂2,GLS

)
= (X′V −1X + H ′H)−1X′V −1Y ,
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where Hβ = 0 are restraints on the parameters, so that

β̂LSE =

(
β̂1,LSE

β̂2,LSE

)
= (X′X + H ′H)−1X′Y .

See Scheffé (1959 p. 19) for example. We may ask when is β̂2,LSE ≡ β̂2,GLS

for an appropriate partition of the fixed effect parameters? See Puntanen
and Styan (1989) for related discussions of the general case of when β̂GLS =
β̂LSE .

6. Conclusion

We began by noting that a robust adaptive outlier detection procedure used
in Clarke (2000) may not be sensitive enough to show up outliers in the
two-way layout. This is despite the procedure showing efficacious usefulness
in detecting outliers in some well known data sets in that paper. We should
not be disappointed however since we can observe a quote from Huber (1996,
p. 62) on Future directions “somewhat embarrassingly, the robustification
of the statistics of two-way tables still is wide open” “Typically there are so
few degrees of freedom per cell that the customary asymptotic approaches
are out of the question”. In our application it may be that the overall size
of the adaptive outlier detection procedure is too small to achieve enough
sensitivity to outliers for the data of Immer et al.

On the other hand we have the classical approach of using half-normal
probability plots, which shows no departure from the initial linear model
with assumptions of normal errors and homogeneous variance structure. But
on further inspection there is definitely a departure from the assumption of
homogeneous error variance in that variety Trebi has a larger variance than
the other four varieties. This is illustrated in Clarke and Godolphin (1992).
This resulted in a discussion of tests of heteroscedasticity in the two-way
layout more generally, showing that the F-test of Clarke and Godolphin
(1992) is in fact quite powerful and the question is posed as to whether it
corresponds to the exact likelihood ratio test based on the error contrasts
for the case where 2 ≤ l ≤ s− 2.

Finally we posed the question or gave an example where a partition
of the least squares estimated effects are the same as the corresponding
partition of the generalized least squares estimates assuming a different
covariance structure.
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