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da Faculdade de Ciências e Tecnologia

Quinta da Torre, 2825–114 Monte de Caparica, Portugal

e-mail: parcr@mail.fct.unl.pt

Abstract

In extremal estimation theory the estimators are local or absolute
extremes of functions defined on the cartesian product of the param-
eter by the sample space. Assuming that these functions converge
uniformly, in a convenient stochastic way, to a limit function g, set es-
timators for the set ∇ of absolute maxima (minima) of g are obtained
under the compactness assumption that ∇ is contained in a known
compact U . A strongly consistent test is presented for this assump-
tion. Moreover, when the true parameter value ~β

k

0 is the sole point in

∇, strongly consistent pointwise estimators, {~̂βk
n : n ∈ N} for ~β

k

0 are

derived and confidence ellipsoids for ~β
k

0 centered at ~̂βk
n are obtained,

as well as, strongly consistent tests. Lastly an application to binary
data is presented.
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1. Introduction

The main estimation techniques, such as least squares and maximum likeli-
hood, are special features of extremal estimation theory (for instance, see [1]
and [12]). In this theory the estimator is an absolute extreme of a function

gn(~β
k
, ~yn) defined on the Cartesian product Θ×Ω of the parameter by the

sample spaces. When applying this theory we may, see [1], obtain a sequence
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{~̂βk
n : n ∈ N} of estimators that does not converge to the true value, ~β

k

0 of
the parameter.

To overcome this difficulty we show that, if gn(~β
k
, ~yn) converges stochas-

tically uniformly to a limit function g(~β
n
) whose set ∇ of absolute max-

ima (minima) is contained in a known compact set U , we can derive, from

gn(~β
k
, ~yn), sets 4n that converge, in a convenient stochastic way, to ∇. We

will present a strongly consistent test for the assumption of compactness,
∇ ⊆ U . These results give us the background for dealing with the case in
which ∇ = {~βk

0}, since it is possible to show that, if ~̃βk
n ∈ ∇n then ~̃βk

n is a

strongly consistent estimator of ~β
k

0. Special interesting is the estimator given
by a generalized gravity center of ∇n which is not only strongly consistent,
but also the center of a confidence ellipsoid for ~β

k

0. From this ellipsoid we
can obtain, using a procedure due to [19], simultaneous confidence intervals

for the parameter ~vk′~β
k

0 and, through duality, tests for hypothesis on ~β
k

0.
We will present two applications of our results. The first one of these

will be to binary data while the second one will be to pseudo maximum
likelihood estimators, these estimators are widely applicable, see [5] and

guarantee that ∇ = {~βk

0}, thus giving good applications of our results.
The use of sets to derive estimators has been used by several authors. In

particular, there is very interesting work using the epi and hypo graphs, for
instance see [9] and [8]. Our approach differs from that one since our sets are

limited by level curves: ∇n(a) = {~βk
: gn(~β

k
, ~yn) ≥ a}. While behind the

epi-graph approach we may find results on convex optimization obtained,
for instance, by [21] and [17], our approach is more inspired by the original
Wald (see [20]) treatment of the strong consistency of maximum-likelihood
estimators.

2. Estimation of sets

Let U be a compact set in the k-dimensional Euclidean space (Rk), ∇ [∇n]
the set, possibly empty, of the absolute maxima of the real valued function
g(β) [g(β, y) = gn(β)], with y the n-dimensional vector of observations] and
β an k-dimensional parameter vector , belonging to the parameter space,
Θ. We shall use sup as shorthand for the supremum. For a set A, int(A),
front(A) and cl(A) will be the interior, the frontier and the closure sets,
respectively. The Euclidean norm of a vector v will be represented by ||v||.
With N the set of positive integers, an → a indicates the convergence of the
sequence {an : n ∈ N} to a. We write an ↓ a when the sequences decreases
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to a, in the same way, an ↑ a when the sequences increases to a and an
P→ a

when it converges stochastically to a. Unless, otherwise specified, all limits
will be taken as n →∞.

We will define; 4(a) = {β : g(β) ≥ a} and 4n(a) = {β : gn(β) ≥ a},
as well as, M = supβ∈Θ g(β) ≤ +∞, Mn = supβ∈Θ gn(β) ≤ +∞, D =
supβ /∈U g(β), Dn = supβ /∈U gn(β), δ = M −D and δn = Mn −Dn.

From the definitions, it follows that,

∇ =
⋂

a≤M

4(a) and ∇n =
⋂

a≤Mn

4n(a).

With,

Sn = sup |gn(β)− g(β)|,
we can easily show that

(2.1) |Mn −M | ≤ Sn and |Dn −D| ≤ Sn.

From (2.1) we obtain,

(2.2) |δn − δ| ≤ 2Sn.

We also have, with, u,m ∈ R
(2.3) 4(u− (m− 1)Sn) ⊆ 4n(u−mSn) ⊆ 4(u− (m + 1)Sn).

The proof of the first inclusion follows from

4(u− (m− 1)Sn) = {β : g(β) ≥ u− (m− 1)Sn} ⊆
{β : gn(β) + Sn ≥ u− (m− 1)Sn} = {β : gn(β) ≥ u−mSn} =

4n(u−mSn),

while the proof of the second one is similar.
We now introduce the assumptions:

A1: the function g(β) is continuous,

A2: 0 < δ < +∞.

Given a set C ⊆ Rk and ε > 0, let us define

Vε(C) =
{

β : inf
c∈C

||β − c|| ≤ ε

}
.

Let us establish
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Proposition 2.1. If A1 and A2 hold, then M = max g(β) = maxβ∈U g(β),
∇ 6= ∅ and an ε > 0 exists, such that, Vε(∇) ⊂ U .

Proof. By A2, we know that M = supβ∈U g(β). Using A1, Weierstrass’s
Theorem and the compactness of U , we get, M = maxβ∈U g(β). Moreover,
we have proved that ∇ is nonempty. To prove the third part of the thesis,
let us assume that no ε > 0 exists such that Vε(∇) ⊂ U . Then it would be
possible to find a sequence βn /∈ U , such that, βn → β ∈ ∇ and, due to A1,
we would have, g(βn) → g(β) = M , so that A2 would not hold.

Proposition 2.2. If A1 and A2 hold, for all ε > 0 an η(ε) > 0 exists, such
that, whenever, M − η(ε) ≤ b ≤ M , then 4(b) ⊆ Vε(∇). Moreover, if A1
and A2 hold and Sn ≤ η(ε)/3, then 4n(Mn − Sn) ⊆ Vε(∇).

Proof. First, according to Proposition 2.1 we know that ∇ is nonempty.
Now, if with ε > 0, there was no η > 0, such that, 4(M − η) ⊆ Vε(∇),
we could take ηn ↓ 0 such that, whichever n, 4(M − ηn) ⊆ Vε(∇) does not
hold. Moreover, there would be an m ∈ N, such that, for n > m, ηn < δ
and so 4(M − ηn) ⊂ U . We could now take βn ∈ 4(M − ηn) − Vε(∇),
obtaining a sequence that, for n > m, lies inside U thus having a convergent
subsequence {βv(n)}. Now βv(n) → β and according to A1, g(βv(n)) → g(β)
but M − ηn ≤ g(βv(n)) ≤ M so g(β) = M which is impossible, because
β clearly would not belong to ∇ since its distance to ∇ is at least ε > 0.
Finally, we know by (2.3) that, 4n(Mn− Sn) ⊆ 4(Mn− 2Sn). Since, Mn−
2Sn ≥ M − 3Sn ≥ M − η(ε) we have, by Proposition 2.2, 4n(Mn − Sn) ⊆
4(M − η(ε)) ⊆ Vε(∇).

We now add the assumption:

A3: Sn
P→ 0.

thus, from expressions (2.1) and (2.2), we know that

Mn
P→ M, Dn

P→ D and δn
P→ δ.

This assumption implies a stochastic uniform convergence of gn(β) to g(β).
Let us establish

Proposition 2.3. If A1, A2 and A3 hold, β̂n ∈ 4n(Mn−Sn) and β̂n
P→ β,

then P [β ∈ ∇] = 1.

Proof. If P [β̂n ∈ 4n(Mn − Sn)] = 1 and Sn ≤ η(ε)/3, we will have,
according to Proposition 2.2, P [β̂n ∈ Vε(∇)] = 1, which establishes the
thesis, since ε is arbitrary and ∇ =

⋂
ε>0 Vε(∇).
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Given a sequence of sets Cn in Rk we will write, Cn
PV→ C ⊆ Rk, when,

∀ε > 0, P [(Cn ⊆ Vε(C)) ∩ (C ⊆ Vε(Cn))] → 1,

this being the set convergence that we consider.
We now introduce a discrete version of A3. Let ηn ↓ 0 be a sequence,

such that,

A4: P [Sn ≤ ηn] → 1.

We now have

Proposition 2.4. If A1, A2 and A4 hold, then 4n(Mn − ηn) PV→ ∇.

Proof. Let Sn ≤ ηn < η(ε)/6 and consider β0 ∈ 4n(Mn − ηn). In this
case, g(β0) > Mn − 2ηn > M − 3ηn, hence, β0 ∈ 4(M − 3ηn) Since,
M − 3ηn > M − η(ε), we have, β0 ∈ 4(M − 3ηn) ⊆ 4(M − η(ε)), hence, by
Proposition 2.2, 4(M − η(ε)) ⊆ Vε(∇), meaning that,

4n(Mn − ηn) ⊆ 4(M − 3ηn) ⊆ 4(M − η(ε)) ⊆ Vε(∇).

Conversely, when Sn ≤ ηn we have the inclusions,

∇ = 4(M) ⊆ 4n(Mn − 2Sn) ⊆ 4n(Mn − η(ε)/3) ⊆ Vε(4n(Mn − ηn)).

So the thesis follows, since, P [∇ ⊆ Vε(4n(Mn − ηn))] → 1.

This result is interesting since it gives us a set estimator, 4n(Mn − ηn)
for ∇.

We note that, with if Cn
PV→ C, then cl(Cn) PV→ C so that we may rewrite

the thesis of Proposition 2.4 as: cl(4n(Mn − ηn)) PV→ ∇.

3. Test for the compact hypothesis

When A4 holds and ηn is known, we can use δn as the test statistic to test
that ∇ ⊆ U , with U a known compact set.

The test rule will be:

(3.1)

{
δn > 2ηn, accept A2

δn ≤ 2ηn, reject A2.

We now establish:

Proposition 3.1. If A4 holds then the test defined by (3.1) is strongly
consistent.
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Proof. From A4 we get, according to (2.2), P [|δn − δ| ≤ 2ηn] → 1. So,
when δ > 0 [δ ≤ 0] we have P [δn > 2ηn] → 1 [P [δn ≤ 2ηn] → 1] and so,
the probabilities of first and second type errors tend to zero when n → ∞,
hence (see [18]) the test is strongly consistent

4. Point estimators and Taylor series

We start by presenting general point estimators to be used when ∇ = {β1},
that is, when there is a sole maximum. According to Proposition 2.3, when
β is the limit of β̂n ∈ 4n(Mn − Sn), we have

(4.1) P [β = β1] = 1.

It is easy to show that, if in Proposition 2.3 we use A4 instead of A3 we
can change β̂n ∈ 4n(Mn − Sn) into β̂n ∈ 4n(Mn − ηn). When A1 and A4
hold and ηn is known, we can use the test rule (3.1) for testing ∇ ⊆ U . The
thesis of Proposition 3.1 and expression (4.1) will both continue to hold.

When ∇ contains a unique point we are mainly interested in the case
for which that point is the true parameter β0. To check if this assumption
holds, we may obtain the limit function g(·) and see if, whatever β0, we have
∇ = {β0}.

From now on, we restrict ourselves to this case, assuming that

A5: The function g(·) is thrice differentiable, the set of zeros of grad(g(β))
has no accumulation point, ∇ = {β0}, and

H = −Hessian(g(β0)) is positive definite.

Clearly A5 implies A1.
Then, with λm the minimum eigenvalue of H, we will have, λm > 0 and

there will be an s > 0 such that β0 is the sole zero of grad(g(β)) in Vs(β0).
Let us consider the function

q(β) = M − 1
2
(β − β0)

′
H(β − β0)

and the sets
4q(a) = {β : q(β) ≥ a}

which are ellipsoids centered at β0.
If A5 holds, we will have

(4.2) T (β) = |g(β)− q(β)|/||β − β0||2 → 0 when β → β0,
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since the residual of a second order Taylor expansion, for thrice differentiable
functions, is an infinitesimal of order higher than the second.

We can use generalized polar coordinates to define the function Z(r) =

max~θ
k−1 T (β0 + rl(~θ

k−1
)).

Proposition 4.1. If A5 holds then Z(r) → 0 as r → 0.

Proof. Let us suppose that A5 holds but that the thesis is not valid. Then,
a sequence 0 < rn ↓ 0 and an c > 0 would exist, such that, Zn(rn) > c,

for all n ∈ N. So, for each rn, due to the continuity of T (β), an ~θ
k−1

exists, such that, T (β0 + rnl(~θ
k−1

)) > c, which is an impossibility since

βn = β0 + rnl(~θ
k−1

n ) → β0 and by (4.2), T (βn) → 0.

We can now state the following three Corollaries

Corollary 4.2. Let Z+(r) = max0≤s≤r Z(s). If A5 holds then, Z+(r) → 0
as r → 0.

Proof. Similar to the proof of Proposition 4.1.

Corollary 4.3. If A5 holds then, supβ∈Vr(β0) |g(β)− q(β)| ≤ Z+(r)r2 → 0
as r → 0.

Proof. The thesis follows directly from Corollary 4.2.

In the next Corollary we will consider ellipsoids putting

ξ
(
Bk×k,~b

k, d
)

=
{

~β
k

:
(
~β

k −~bk
)′

Bk×k

(
~β

k −~bk
)
≤ d

}
,

where Bk×k is a positive definite matrix and d ∈ R+
0 .

Corollary 4.4. If A5 holds, then 4q(a) = ξ(H/2, β0,M − a) = ξ(H,β0,
(M − a)/2) and, with bn ↓ 0, supβ∈40(M−αbn) |g(β) − q(β)|/bn → 0, for all
α ≥ 0.

Proof. The fist part of the thesis results from the definition of q(β). Let λm

be the smallest eigenvalue of H, so that the largest semiaxis of 4q(M−αbn)
measures hα,n =

√
(M − αbn)/λm, hence 4q(M −αbn) ⊆ Vhα,n(β0) and the

thesis follow from Corollary 4.3.

We now need to state the two following Lemmas
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Lemma 4.5. If A2 and A5 hold then an T < M exits such that for all a
verifying T ≤ a < M the set 4(a) is compact and connected.

Proof. If a > M − δ, 4(a) ⊂ U , so that it is closed and bounded, thus a
compact. If there is no T < M such that, for a ∈]T,M ], 4(a) is connected
we could chose an ↑ a such that 4(an) is not connected. Then, there
would be pairs Oi(an), of open sets such that Oi(an)

⋂4(an) 6= ∅, i =
1, 2;

⋂2
i=1(Oi(an)

⋂4(an)) = ∅ and
⋃2

i=1(Oi(an)
⋂4(an)) = 4(an). There

also would be an m ∈ N, such that, n > m implies an > M − δ, and
the closures cl(Oi(an)

⋂4(an)), i = 1, 2 will be contained in U so that
they will be compact sets. If A5 would hold, the limit function and its
gradient would be continuous, thus g(β) would have maxima βn,i belonging
to cl(Oi(an)

⋂4(an)), i = 1, 2. Since, grad(g(βn,i)) = 0, i = 1, 2, according
to Proposition 2.2 and ∇ = {β0}, β0 would be an accumulation point of
the set zeros of grad(g(β)) which is impossible whenever A5 holds Hence,
if A2 and A5 hold we cannot have an → M with the sets 4(an) being
disconnected, thus an T < M , fulfilling the conditions stated in the thesis,
must exist.

Lemma 4.6. If A is a connected and compact set, B is a compact set and
∅ 6= A

⋂
B ⊂ int(B), then A ⊂ B.

Proof. Both A
⋂

B and front(B) are compact sets. Let us define in A
⋂

B
the distance to front(B), which, according to Weierstrass’s Theorem will
have a minimum, say, d. Since A

⋂
B is a closed set and (A

⋂
B)

⋂
front(B)

= ∅, we know that d > 0.
Now let us suppose that A − B 6= ∅, then we would have open (non-

empty) sets Vd/3(A
⋂

B) and Vd/3(A − B), which is impossible, due to A
and B being connected and to

• Vd/3(A
⋂

B)
⋂

A 6= ∅, Vd/3(A−B)
⋂

A 6= ∅
• (Vd/3(A

⋂
B)

⋂
A)

⋂
(Vd/3(A−B)

⋂
A) = ∅

• (Vd/3(A
⋂

B)
⋂

A)
⋃

(Vd/3(A−B)
⋂

A) = A

to complete the proof we have only to point out that A
⋂

B = A is equivalent
to A−B = ∅.
Proposition 4.7. If A2, A4 and A5 hold then

P [4q(Mn − ηn) ⊂ 4(M − 2ηn) ⊂ 4n(Mn − 3ηn) ⊂
4(Mn − 4ηn) ⊂ 4q(Mn − 5ηn) ⊂ 4q(M − 6ηn)] → 1.
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Proof. If Sn < ηn we have 4(Mn−2ηn) ⊂ 4n(Mn−3ηn) ⊂ 4(Mn−4ηn),
as well as, 4q(Mn − 5ηn) ⊂ 4q(M − 6ηn). Now, due to Corollary 4.3, an
m ∈ N exists, such that n ≥ m implies zn = supβ∈4q(M−7ηn) |q(β)− g(β)| <
ηn, so that 4(Mn − 4ηn)

⋂4q(M − 7ηn) ⊂ 4q(Mn − 5ηn). Moreover, if
ηn < (M − T )/5, with T as defined in Lemma 4.5, and again with Sn < ηn

we will have, for n large enough, Mn − 4ηn > T , and due to Lemma 4.5,
4(Mn−4ηn) is a connected set that intersects the compact set4q(M−7ηn)
and is contained in int(4q(M − 7ηn)), so by Lemma 4.6 we know that
4q(M − 7ηn)

⋂4(Mn − 4ηn) = 4(Mn − 4ηn). Thus we established that

4q(Mn − ηn)⊂ 4(M − 2ηn) ⊂ 4n(Mn − 3ηn) ⊂
4(Mn − 4ηn)⊂ 4q(Mn − 5ηn) ⊂ 4q(M − 6ηn)

the rest of the proof being obvious.

As a direct extension of the usual definition of gravity center (for bodies with
uniform mass density), given A ⊂ Rk, we take its gravity center, GC(A), to
be the point in Rk with Cartesian coordinates given by

mj =
∫

A
xj

k∏

i=1

dxi j = 1, ..., k.

Useful results on ellipsoids and gravity centers are presented in the
Appendix.

We now establish

Corollary 4.8. If A2, A4 and A5 hold then

P [GC(4n(Mn − 3ηn)) ∈ ξ(H, β0, 2ηn)] → 1.

Proof. It is a direct application of Proposition 7.4, given in the Appendix.

5. Confidence ellipsoids and tests

We now show how to derive confidence ellipsoids for β0 from the gravity
center estimator. In order to to do it we replace A4 by

A’4: There exists a sequence {vn ↓ 0 : n ∈ N} such that lim inf P [Sn ≤
zvn] ≥ G(z), with G(z) a distribution with support in R+.
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We may now reason as for obtaining the Corollary 4.8 in order to show that

lim inf P
[
β̂n ∈ ξ(H, β0, 2zvn)

]
≥ G(z)

with β̂n the gravity center of 4n(Mn − 3zvn). Moreover, with Ĥn =
−Hess(g(β̂n)), since the second partial derivatives of g(·) are continuous and
β̂n is a strongly consistent estimator, for all ε > 0, we have P [ξ(H,β0, 2zvn) ⊂
ξ(Ĥn, β0, 2(z + ε)vn)] → 1, so that,

lim inf P
[
β̂n ∈ ξ

(
Ĥn, β0, 2(z + ε)vn

)]
≥ G(z).

Now, β̂n ∈ ξ(Ĥn, β0, 2(z + ε)vn) if and only if β0 ∈ ξ(Ĥn, β̂n, 2(z + ε)vn) and
so lim inf P [β0 ∈ ξ(Ĥn, β̂n, 2(z + ε)vn)] ≥ G(z).

Thus ξ(Ĥn, β̂n, 2(z + ε)vn) may be considered as a confidence ellipsoid
for β0 whose limit level is not inferior to G(z). We required G(z) to be a
distribution so that this bound may be freely chosen.

Moreover, (see [19]), there exists a pair of parallel planes orthogonal to
~dk 6= ~0k and tangent to ξ(Ĥn, β̂n, 2(z + ε)vn), with β being between these
planes, if and only if,

|d′β − d
′
β̂n| ≤

√
2(z + ε)vnd′Ĥnd.

Since a point lies inside an ellipsoid, if and only if, it lies between all pairs
of parallel planes tangent to that ellipsoid, we have, indicating by

⋂
d that

all vector in Rk are considered,

P

[⋂

d

(∣∣∣d′β − d
′
β̂n

∣∣∣
)
≤

√
2(z + ε)vnd′Ĥnd

]
≥ G(z),

thus obtaining simultaneous confidence intervals for all linear functions of
the parameter. The lower bound of the joint probability for these intervals
will be G(z).

If vn/ηn → 0 we clearly see that

P
[
β0 ∈ ξ

(
Ĥn, β̂n, ηn

)]
→ 1,

so that we have a sequence of confidence ellipsoids with limit level 1. We
point out that the largest semiaxis of these ellipsoids vanishes to zero. Let
C be a subset of the parameter space. Then, if we want to test H0 : β0 ∈ C
we can use the test rule
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



ξ
(
Ĥn, β̂n, ηn

)⋂
C 6= ∅, accept H0

ξ
(
Ĥn, β̂n, ηn

)⋂
C = ∅, reject H0

we can now establish

Proposition 5.1. If C is closed the test defined above is strongly consistent.

Proof. When H0 holds, β0 ∈ ξ(Ĥn, β̂n, ηn) will imply ξ(Ĥn, β̂n, ηn)
⋂

C
6= ∅, so that P [ξ(Ĥn, β̂n, ηn)

⋂
C 6= ∅] → 1. If β0 /∈ C, since C is closed

there will be ε > 0, such that, Vε(β0)
⋂

C = ∅. Since the largest semiaxis
of the ellipsoids ξ(Ĥn, β̂n, ηn) tends to zero with probability 1 and P [β0 ∈
ξ(Ĥn, β̂n, ηn)] → 1, we will have P [β0 ∈ ξ(Ĥn, β̂n, ηn) ⊂ Vε(β0)] → 1, and
so, when β0 /∈ C, P [ξ(Ĥn, β̂n, ηn)

⋂
C = ∅] → 1.

For instance, we can use this technique to test H0 : Jβ0 = c with J an s× k
matrix.

6. An Application to binary data

Let Yn,1, ..., Yn,m be independent binomial random variables, with parame-
ters, n and pi,0 = p(~xh

i , β0), the ~xh
i being known, i = 1, ..., m, while β0 is to

be estimated.
The ln− likelihood will be

Ln(β) =
∑m

i=1 ln
(

n
yn,i

)

+
m∑

i=1

yn,i ln
(
p

(
~xh

i , β
))

+
m∑

i=1

(n− yn,i) ln
(
1− p

(
~xh

i , β
))

so that we must maximize

gn(β) =
m∑

i=1

yn,i

n
ln

(
p

(
~xh

i , β
))

+
m∑

i=1

(n− yn,i)
n

ln
(
1− p

(
~xh

i , β
))

.

We now have the limit function

g(β) =
m∑

i=1

p
(
~xh

i , β0

)
ln

(
p

(
~xh

i , β
))

+
m∑

i=1

(
1− p

(
~xh

i , β0

))
ln

(
1− p

(
~xh

i , β
))

.
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Since, yn,i/n has mean value p(~xh
i , β0) and variance p(~xh

i , β0)(1−p(~xh
i , β0))/n,

i = 1, ...m, A4 will hold with ηn = n−r, 0 < r < 1/2. Assumption A1
clearly holds, and for A2 to be fulfilled, the statistician has only to choose
a compact U large enough to contain ∇. Moreover, if p(~xh

i , β1) = p(~xh
i , β2),

i = 1, ...,m, implies β1 = β2, it suffices to require that there is a neighbor-
hood of β0 contained in U to ensure that A1 and A2 hold, since then, the
absolute maximum of g(β) is attained at β0. In this example, since ηn is
known, we can test A2.

If we want to obtain confidence ellipsoids and or test H0 : Jβ0 = c we
must require p(~xh

i , β) to be thrice differentiable and check if A5 holds. We
can then use vn = n−1/2, it being interesting to observe that vn bounds
the family of the {ηn} = {n−r : r ∈]0, 1/2[}. There is a wide range of
situations involving independent binomial variables to which our results may
be applied, for instance, in connection with probit analysis, see [4], when
complex resistance to insecticides has been established, and, see [3] and [10],
for the analysis of binary data.

7. An application to pseudo maximum likelihood

This estimation technique was introduced by [5] using results give by [11],
[16], [7] and [2]. It is assumed that the m-dimensional observations follow
the model

~ym
i = ~fm

(
~xp

i ,
~β

k

0

)
+ ~em

i , with ~ym
i , ~em

i ∈ Rm, ~xp
i ∈ Rp and i ∈ N.

The parameter space Θ will be contained in Rk with ~β
m

0 being the true
parameter vector. The error vectors ~em

i have null mean value and the con-
ditional distribution of [~em

1 |...|~em
n ] given Xn = [~xp

1, ..., ~x
p
n] is equal to the

product of the conditional distributions ~em
i given ~xp

i , i = 1, 2, ..., n. Finally,
it is assumed that if ~xp

i = ~xp
j then the conditional distributions of ~em

i and ~ep
j

are equal, i 6= j ∈ {1, 2, ..., n}. Thus, when Xn is a model matrix, contain-
ing the values of controlled variables, the errors are independent and if the
controlled vectors are equal the errors are identically distributed.

To avoid duplication we will call generalized densities to the usual den-
sities and to the probability functions. In deriving pseudo maximum- like-
lihood estimators, linear exponential generalized densities are used. A gen-
eralized density is linear exponential if can be written as:

l(~um, ~µm) = exp(A(~µm) + B(~um) + C(~µm)
′
~um)
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where A(~µm) and B(~um) are scalars, C(~µm) is a vector and ~µm is the mean
vector of the distribution. We point out that Binomial, Poisson, Negative bi-
nomial, Gamma, Normal generalized, Normal multivariate and Multinomial
are examples of distributions whose densities are linear exponential. When
using one of these generalized densities to derive an estimator the logarithm
of the likelihood that we would have, if the observations had that general-
ized density, is maximized. Since we are not maximizing a true likelihood
the technique is called pseudo likelihood.

Actually, (see [5]), instead of the pseudo ln-likelihood it is suffices to
maximize

gn(β) =
1
n

n∑

i=1

[
A(f(xi, β)) + C(f(xi, β))

′
yi

]

to obtain the pseudo maximum likelihood estimators.
Taking C0(β|x) = C(f(xi, β))

′
f(xi, β), g0

n(β) = 1
n

∑n
i=1[A(f(xi, β)) +

C0(β|xi)] and e0
n(β) = 1

n

∑n
i=1 C(f(xi, β))

′
ei, we get the decomposition

(7.1) gn(β) = g0
n(β) + e0

n(β).

It is important to point out that (see [5]), β0 is the sole vector in the set
∇0

n of absolute maxima of g0
n(β) and the sole zero of grad(g0

n(β)). Moreover
gn(β) may also have an unique absolute maximum β̃n. For instance, see
[6], this happens when using the generalized Poisson density to discuss a
question that we met, if we take m = 1 and xi = i with i = 1, 2, ..., we get,
(see [6])

gn(β) =
1
n

n∑

i=1

[− exp(iβ) + iβyi]

so that, if β > 0, we will have

g0
n(β) =

1
n

n∑

i=1

(iβ − 1) exp(iβ) →∞

and gn(β) will not converge almost surely to a limit function as is stated in
Theorem 1 of [5], although all conditions stated there are fulfilled. Thus to
use the very fine technique of pseudo-maximum likelihood we will have to
introduce additional assumptions. These will be

A6: The controlled vectors ~xp
n belong to a compact set D and the parameter

space Θ will also be a compact set to. Moreover, the variances σ2(x) and
λ(x) of e and e2, given x, (we restrict ourselves to the case m = 1 to make our



116 J.T.Mexia and P.C. Real

point), will be continuous functions of x, as well as, the second derivatives
of A(f(xi, β)) and C(f(xi, β)).

Of course, the first and second order derivatives will be functions of
(β, x) defined in the compact set Θ×D. According to Weierstrass’s Theorem,
there will be finite maxima for the second and fourth moments of C(f(X,β)).

We now establish

Proposition 7.1. If A6 holds and β ∈ Θ then e0
n(β) a.s.→ 0 and

grad(e0
n(β)) a.s.→ 0.

Proof. The first part of the thesis may be established by proving that the
components of grad(e0

n(β)) a.s.→ 0. The j-th component of the gradient will
be

1
n

n∑

i=1

∂C(f(xi, β))
∂βj

ei

Since, V [∂C(f(xi,β))
∂βj

ei] is limited and E[∂C(f(xi,β))
∂βj

ei] = 0, i = 1, ...n; j =
1, ..., k, according to the Law of Large Numbers for independent variables,
(see [22, page 118])

1
n

n∑

i=1

∂C(f(xi, β))
∂βj

ei
a.s.→ 0, j = 1, ..., k.

With Mn(β) and M0
n(β) the hessian matrices of, respectively, gn(β) and

g0
n(β), and β̃n a zero of the grad(gn(β)), if ρ(M) is the spectral radius of

the matrix M , we will have, according to (7.1)

(7.2)
grad

(
gn

(
β̃n

))
= grad(gn(β0)) + Mn

(
β̂n

)(
β̃n − β0

)

= grad
(
e0
n (β0)

)
+ Mn

(
β̂n

)(
β̃n − β0

)
= 0

with β̂n, such that ||β̂n − β0|| ≤ ||β̃n − β0||.
We now follow a procedure similar to the one used in [13] to establish

strong consistency for additive extremal estimators. In order to do it we
introduce

A7: An upper bound exists for ρ(M−1
n (β)) when β ∈ Θ.

Thus, according to Proposition 7.1 and to (7.2), we get

Corollary 7.2. If A6 and A7 hold then β̃n
a.s.→ β0.
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We point out that, according to (7.2), when A6 and A7 hold, the sole limit,
then, thus sole accumulation point of any sequence of roots for grad(gn(β))
is, with probability 1, the true parameter value. The zeros of grad(gn(β))
include the local extremes of grad(gn(β)). The accumulation points of ex-
tremes of objective functions are studied under a very general set-up in [9].
Behind the clear-cut result we now obtain is the decomposition (7.1) and
the fact that ∇0

n = {β0}. In practical applications A7 may be difficult to
verify. Thus we return to our paper main approach, replacing A7, by

A8: The vectors xi belong to a finite set {~up
1, ..., ~u

p
N}, with ui being chosen

ni times and |nl/n− rl| ≤ d/n, i = 1, ..., N .
Functions |A(f(ui, β))| and |C(f(ui, β))| will have , for β ∈ Θ, maxi-

mums ai and ci, respectively. Thus, if A6 and A8 hold

(7.3) sup
β∈Θ

∣∣∣∣∣∣
g0
n(β)−

N∑

j=1

rj

[
A(f(uj , β)) + C0(β|uj)

]
∣∣∣∣∣∣
≤ d

n

N∑

j=1

aj + cj

since we now have

N∑

j=1

nj

n

[
A(f(uj , β)) + C0(β|uj)

]
.

With, φl = {i : xi = ul} and sl =
∑

i∈φl
ei, the vector

√
n~sN with com-

ponents
√

nsl, l = 1, ..., N , will have normal asymptotic distribution with
null mean vector and covariance matrix D. The principal elements of D will
be rlσ

2ul(β0), l = 1, ..., N . Thus, see [14], if A8 holds, with ξ(1−q,N) the
quantile for probability 1 − q of the central chi-square distribution with N
degrees of freedom, we will have

(7.4) P


⋂

(N)

|~vN ′√
n~sN | ≤

√
ξ(1−q,N)~v

N ′D~vN


 → 1− q

in the last expression
⋂

(N) indicates that all ~vN ∈ RN are considered.
We now establish

Proposition 7.3. If A6 and A8 hold we may take ηn = n−s with s ∈]0, 1/2[.

Proof. Considering (7.3) and that gn(β) − g0
n(β) = e0

n(β) =
∑N

i=1
ni
n C

(f(ui, β))
′
si, the thesis follows directly from (7.4), since the C(f(ui, β)) will

be bounded in Θ.



118 J.T.Mexia and P.C. Real

It is easily seen that A8 may be simplified by only requiring that

P

[ ∞⋂
n=m

N⋂

l=1

(∣∣∣nl

n
− rl

∣∣∣ ≤ d

n

)]
→ 1− q, as m →∞.

Appendix

A. Ellipsoids and gravity centers
With Bk×k a positive definite matrix and d ∈ R+

0 , we have the ellipsoid
ξ(B,~ak, d) = {~xk : (~xk − ~ak)

′
B(~xk − ~ak) ≤ d}.

We can define a subspace of the range space of the Ak×k matrix by
AD = {A~xk : ~xk ∈ D} with D ⊆ Rk. If A is a regular matrix, we have
Aξ(B,~ak, d) = ξ(A

′−1BA−1, A~ak, d).
P is the orthogonal diagonalizer of B, (about orthogonal diagonaliz-

ers, see [15]), if P is orthogonal and PBP
′
= Λ, with Λ the diagonal ma-

trix whose principal elements are the eigenvalues {p1, ..., pk} of B. The
row vectors of P will be the eigenvectors of B. In this case we will have
Pξ(B,~ak, d) = ξ(P

′−1BP−1, P~ak, d) = ξ(Λ, P~ak, d).
It’s easy to show that ξ(Λ, Pa, d) = {~xk : (x − Pa)

′
Λ(x − Pa) ≤ d} =

{~xk :
∑n

i=1(xi − bi)2pi ≤ d}, with Pa = b = [bi], i = 1, ..., n.

When using generalized polar coordinates we put: xi = bi + rli(~θ
k−1

),
where





l1

(
~θ

k−1
)

=
k−1∏

j=1

cos θj

l2

(
~θ

k−1
)

=
k−2∏

j=1

cos θj sin θk−1

...

li

(
~θ

k−1
)

=
k−i∏

j=1

cos θj sin θk−i+1 i = 3, ..., k − 1

...

lk

(
~θ

k−1
)

= sin θ1

with r ∈ R+
0 the radius and ~θ

k−1
the vector of center angles, verifying

θi ∈ [−π/2, π/2], i = 1, ..., k − 2 and θk−1 ∈ [0, 2π].

For each ~θ
k−1

center angles and each ellipsoid we have a semi-axis.
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The difference between the lengths of semi-axis associated with ~θ
k−1

for

ellipsoids ξ(Λ, b, di), i = 1, 2, will be
√
|d2 − d1|/

∑k
i=1 pil2i (θ).

We now study the location of gravity centers assuming uniform mass
densities. The gravity center GC(D) of a set D is completely specified by
GC(PD) with P an orthogonal matrix, since these matrices are associated
to rotations. Let P be an orthogonal diagonalizer of B, then, if ξ(B, a, d1) ⊆
D ⊆ ξ(B, a, d2) with D0 = PD and b = Pa, ξ(Λ, b, d1) ⊆ D0 ⊆ ξ(Λ, b, d2).
Let us decompose D0 into truncated cylinders with axis going through b and
infinitesimal rotation radius. For each ~θ

k−1
we will have such a cylinder,

along its axis the positive direction will be indicated by l(~θ
k−1

), so that,

there will be a right and a left part for each cylinder, with lengths c1(~θ
k−1

)

and c2(~θ
k−1

) with masses proportional to ci(~θ
k−1

)/(c1(~θ
k−1

)+c2(~θ
k−1

)) and

gravity centers b−(−1)ici(~θ
k−1

)l(~θ
k−1

)/2, i = 1, 2, respectively. The gravity
center of the truncated cylinder being

2∑

i=1

ci

(
~θ

k−1
)

(b− (−1)i ci

(
~θ

k−1
)

l
(
~θ

k−1
)

/2)/
2∑

i=1

ci

(
~θ

k−1
)

= b−
(
c2

(
~θ

k−1
)
− c1

(
~θ

k−1
))

/2.

Now, the extremes of the truncated cylinder will lie in the shell bounded by
the pair of ellipsoids, so that, for all ~θ

k−1
, d1 ≤ ci(~θ

k−1
) ≤ d2, i = 1, 2, and

|c1(~θ
k−1

) − c2(~θ
k−1

)| ≤ (d2 − d1), hence, GC(~θ
k−1

) ∈ ξ(Λ, b, (d2 − d1)/2).

Since, GC(D0) is a weighted average of the GC(~θ
k−1

) and all GC(~θ
k−1

)
belong to ξ(Λ, b, (d2 − d1)/2) we have, GC(D0) belonging to ξ(Λ, b, (d2 −
d1)/2). Inverting the rotation associated to P we establish:

Proposition 7.4. If ξ(B, a, d1) ⊆ D ⊆ ξ(B, b, d2), then GC(D)
∈ ξ(B, b, (d2 − d1)/2).

References

[1] T. Amemiya, Advanced Econometrics, Harvard University Press 1985.

[2] J. Burguete, R. Gallant and G. Souza, On Unification of the Asymptotic
Theory of Nonlinear Econometric Models, Econometric Reviews, 1, (1982),
151–190.

[3] D.R. Cox and E.J. Snell, The Analysis of Binary Data, Chapman & Hall,
London, 2nd Ed., 1989.



120 J.T.Mexia and P.C. Real

[4] D. J. Finney, Probit Analysis, Cambridge University Press 1971.

[5] C. Gourieroux, A. Monfort and A. Trognon, Pseudo Maximum Likelihood
Methods: Theory, Econometrica 52 (3), (1984).

[6] C. Gourieroux, A. Monfort and A. Trognon, Pseudo Maximum Likelihood
Methods: Applications To Poisson Models, Econometrica 52 (3) (1984).

[7] R. Gallant and A. Holly, Statistical Inference in an Implicit, Nonliner, Simul-
taneous Equation Model in the Context of Maximum Likelihood Estimation,
Econometrica 48 (1980), 697–720.

[8] J. Hoffman-Jorgensen, The Theory Of Analytic Sets, Aarhus Universitet,
Matematisk Institut, Various Publications Series, No.10, March 1970.

[9] J. Hoffman-Jorgensen, Asymptotic Likelihood Theory, Aarhus Universitet,
Matematisk Institut, Various Publications Series, No. 40, March 1992.

[10] D.E. Jennings, Judging Inference Adequacy in Logist Regression, Journal of
American Statistical Association 81 (1986), 471–476.

[11] R. Jennrich, Asymptotic Properties of Nonlinear Least Squares Estimators,
The Annals of Mathematical Statistics 40 (1969), 633–643.

[12] J.D. Jobson and W.A. Fuller, Least Squares Estimation When the Covari-
ance Matrix and Parameter Vector Are Functionally Related, Journal of the
American Statistical Association 75 (1980), 176–181.

[13] J.T. Mexia and P. Corte Real, Strong Law of Large Numbers for Additive
Extremum Estimators, Discussiones Mathematicae - Probability and Statis-
tics 21 (2002), 81–88.

[14] J.T. Mexia, Asymptotic Chi-squared Tests, Designs, and Log-Linear Models,
Trabalhos de Investigaçäo No. 1, 1992.
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