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Abstract

In small to moderate sample sizes it is important to make use of
all the data when there are no outliers, for reasons of efficiency. It is
equally important to guard against the possibility that there may be
single or multiple outliers which can have disastrous effects on normal
theory least squares estimation and inference. The purpose of this
paper is to describe and illustrate the use of an adaptive regression
estimation algorithm which can be used to highlight outliers, either
single or multiple of varying number. The outliers can include ’bad’
leverage points. Illustration is given of how ’good’ leverage points are
retained and ’bad’ leverage points discarded. The adaptive regression
estimator generalizes its high breakdown point adaptive location esti-
mator counterpart and thus is expected to have high efficiency at the
normal model. Simulations confirm this. On the other hand, examples
demonstrate that the regression algorithm given highlights outliers and
’potential’ outliers for closer scrutiny.

The algorithm is computer intensive for the reason that it is a global
algorithm which is designed to highlight outliers automatically. This
also obviates the problem of searching out “local minima” encountered
by some algorithms designed as fast search methods. Instead the ob-
jective here is to assess all observations and subsets of observations
with the intention of culling all outliers which can range up to as much
as approximately half the data. It is assumed that the distributional
form of the data less outliers is approximately normal. If this distribu-
tional assumption fails, plots can be used to indicate such failure, and,
transformations may be ;required before potential outliers are deemed
as outliers. A well known set of data illustrates this point.
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1. Introduction

For fitting the linear model

Yj = xTj β0 + εj , j = 1, . . . , n,

the assumption on which much inference is based is that the εj are indepen-
dent random variables with a normal cumulative distribution function, say
Φ(./σ). Here Φ is the standard normal cumulative distribution and σ is a
scale parameter. Also xj and β0 are p-dimensional vectors of covariates and
regression coefficients. The assumption of normality is used for inference
based on least squares estimates of β0 and is also used in formulating many
of the tests for outliers discussed in Cook and Weisberg (1982), and Barnett
and Lewis (1994).

While least squares estimates are known to be efficient under the normal
model they are greatly affected by the presence of outliers. The number or
prevalence of outliers is not usually known to the data analyst prior to
analysis and may constitute up to as much as approximately one half of the
data. This motivated the introduction of the least median of squares or LMS
estimation technique of Rousseeuw (1984) and Rouseeuw and Leroy (1987).
But even LMS which is robust to such large contamination of the data
can only be regarded as an ’exploratory tool’ for identification of outliers
in the view of Atkinson (1986a) and Fung (1993). Hettmansperger and
Sheather (1992) in fact criticise LMS for its slow rate of convergence to a non-
normal asymptotic distribution and also possible numerical instability. On
the other hand Atkinson (1994) perseveres with the use of LMS in the case
of regression, and the Minimum Volume Ellipsoid in the case of multivariate
estimation, to identify multiple outliers using his ’stalactite’ plots.

In order to obtain more efficient estimates a common suggestion has
been to use a one-step M-estimator or as recently investigated by Simpson,
Ruppert and Carroll (1992) a one-step GM-estimator. These estimators
retain the high-breakdown point of their initial estimators, such as LMS.
However their motivation for use is essentially asymptotic. This is also
the motivation behind such methods as Rousseeuw and Yohai’s (1984)
S-estimators, see also Davies (1990), Ruppert (1992), and the MM, and
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tau estimators of Yohai (1987) and Yohai and Zamar (1988). Performances
in small to moderate sample sizes rely on the hope that the asymptotics will
somehow still be operating for finite sample sizes n, albeit that there may
be points of influence, for example caused by outlying x observations.

The alternative approach to using high breakdown estimators which is
frequently employed in finite sample estimation is the use of ‘hands on’ tech-
niques for the detection of multiple outliers, such as introduced by Kianifard
and Swallow (1989, 1990), Swallow and Kianifard (1996) and also recently
by Hadi and Simonoff (1993). The approach of Kianifard and Swallow as
observed by the latter authors, involves first ordering the observations by a
single case diagnostic, then using the recursive residuals of Brown, Durbin,
and Evans (1975), based on the p observations with smallest diagnostic,
to identify outlying observations. The fact that single-case diagnostics are
susceptible to masking, where the presence of an outlier goes undetected be-
cause of another or perhaps other multiple outliers, means that a case with
smallest diagnostic can be a true outlier which would then lead to incorrect
identifications from the recursive residuals. On the other hand the proposed
procedure of Hadi and Simonoff (1993) requires as its starting point an ini-
tial clean subset M initially of size h = integer part of (n + p − 1)/2 =
[(n+ p− 1)/2]. Interestingly the problem of finding approximately one half
of the observations that are outlier free is in essence the motivation behind
LMS, for instance, in the case of simple linear regression it corresponds to
the narrowest strip covering half of the observations. Hadi and Simonoff
(1993) offer two proposed methods to find an initial clean subset, which in
itself should lead to approximately 50% breakdown point estimators, but as
they readily admit the breakdown points of their overall methods is an open
problem.

Rousseeuw (1984) also proposed an approximately 50% breakdown es-
timator which he called least trimmed squares, LTS, and which was also
described independently by Butler (1982). This estimator minimizes

h∑
i=1

r2
i:n,(1.1)

where r2
1:n ≤ r2

2:n ≤ · · · ≤ r2
n:n are the ordered squared residuals given by

rj = Yj−xjβ. Rousseeuw and Leroy (1987, pp. 124 and 132) choose h to be
[n/2]+[(p+1)/2] in order to maximize the breakdown point. Bednarski and
Clarke (1993) arrived at this estimator from a more general form, treating
the class of trimmed likelihood estimators and discussing a compact related
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differentiability of the resulting estimators of location and scale. The pro-
portion of trimming, α = g/n where g = n− h, is allowed to vary in Clarke
(1994) and is chosen to minimize the estimated asymptotic variance of the
estimator. In this way possible multiple outliers are identified and confidence
intervals which have robustness of efficiency and robustness of validity even
in relatively small samples are given. The estimators and consequent pro-
cedures were shown to have an approximate breakdown point of 50%. In
this paper we describe the algorithm for the regression setting which iden-
tifies outliers of varying number and investigate its performance on several
data sets as well as by simulation. The method has high power when the
proportion of outliers is small as evidenced by Monte Carlo studies in the
ilk of those of Kianifard and Swallow (1989). When dealing with larger
proportions of contamination the outliers are easily identified if they appear
as symmetric contamination, but if they appear as asymmetric contamina-
tion the degree to which the aberrant observations are outlying determines
whether the whole subset of outliers is identified. This is particularly so for
high leverage outliers.

The LTS estimator converges to a normal distribution, but has only 7.1%
asymptotic efficiency at the normal model. However, allowing the trimming
proportion to vary adaptively, Clarke (1994) demonstrates through simula-
tions that the resulting adaptive trimmed likelihood estimators exhibit high
efficiency, indeed for sample sizes of n=10 or n=20 the average trimming pro-
portion over all samples in the simulations from normal data was 0.0069 or
0.0006, respectively. Moreover, the adaptive estimates are robust to depar-
tures from the normal model. The basis of the adaptive trimmed likelihood
estimator relies on choosing to trim 0 ≤ g ≤ G∗(n) to minimize the estimated
asymptotic variance of the location estimator. This is an idea synonomous
with adaptive trimmed mean estimates of Tukey and McLaughlin (1963)
and Jaeckel (1971), though those authors never suggested that their adap-
tive trimmed mean approach could be used for identifying outliers, perhaps
because as demonstrated in Clarke (1994) this approach to outlier detection
does not work for the trimmed mean, whereas it is completely successful for
the trimmed likelihood mean estimator. The choice of an upper bound on
the proportion of outliers possibly present, G∗(n), is governed by three pos-
sibilities: the computation time required to compute the adaptive trimmed
likelihood estimator; the breakdown bound for the adaptive trimmed likeli-
hood estimator; or the users prior knowledge about a value of G∗(n).
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The regression version of the adaptive trimmed likelihood algorithm which
we shall denote by ATLA supplies simultaneously the regression estimates
and outliers, where the regression estimates are exactly those of the least
squares estimates based on the sample with the outliers removed. This
obviates successive analyses using least squares that may be required be-
cause of masking (Atkinson, 1986b). While an automatic procedure that
we give via the algorithm of Section 2 is proposed it should be understood
that the outliers are identified subject to the normal model. The algorithm
also provides an order of importance by which observations or groups of
observations may be classed to be potentially outlying. Plots of estimated
variances and or regression estimates for different proportions of trimming
using trimmed likelihood estimation can highlight potential non-normality
and observations that are potential outliers worthy of further consideration.

If it were known that there were g outliers, typical outlier identification
techniques involve computation of N =

(n
g

)
least squares estimates. ATLA

sets G∗(n) to be an upper bound on the number of outliers whence com-
putation can be intensive. Apart from computational considerations the
maximum value of G∗(n) is chosen in relation to the breakdown bound. It
is shown in Clarke (1994) that the location adaptive trimmed likelihood es-
timator inherits the maximum breakdown bound for LTS when ’trimming’
G∗(n) = [n/2] observations. Hence in analogy, the maximum value for G∗(n)
to be chosen in regard to ATLA in regression is

G∗(n) = n− [n/2]− [(p+ 1)/2],(1.2)

since ’trimming’ this number of observations in LTS gives the maximum
breakdown bound (Rousseeuw and Leroy, 1987, pp. 124 and 132). Clearly,
computing N least squares estimates when g is given by this value of G∗(n)
is only feasible for small n. But the situation for small n is that an efficient
estimator is needed, such as provided by ATLA. Bigger sample sizes lead
to natural computation time bounds on the upper proportion of outliers
that can be detected by ATLA, but these bounds increase with advances
in computing power.

In Section 3 we analyse the ’modified wood specific gravity’ data of
Rousseeuw (1984). This data was used to motivate LMS. ATLA yields ex-
actly the outliers known to be the contamination. Another set of outliers
constituting a larger proportion of the data is identified from the telephone
data used to introduce the S-estimator of Rousseeuw and Yohai (1984).
A major data set in the statistical literature is the Brownlee stack loss
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data examined by many authors including Atkinson (1986a), Chambers and
Heathcote (1981) and others mentioned in Hampel et al. (1986). Here the
algorithm is useful for identifying the potential outliers but the suggestion
is that the data apart from the 4 outliers do not support the assumption
of normality. As an example where G∗(n) must be reduced because of the
computation time, the Scottish Hill Races data of Atkinson (1986b) is anal-
ysed. The outliers are identified nevertheless by ATLA. To illustrate the
usefulness of ATLA, simulations of a simple linear regression model for a
sample size n = 15 are carried out with both low leverage outliers and high
leverage outliers that range in number from one up to G∗(n) equal to seven.
ATLA is successful in identifying the outliers and moreover trims few data
samples when there are no outliers. These analyses are reported in Section
4. Analyses of Sections 3 and 4 follow the preliminary definitions in Chapter
2 which give the regression algorithm ATLA.

2. Definitions and the regression estimation algorithm

For a parametric family of densities { fθ : θ ∈ Θ} Bednarski and Clarke
(1993) introduced the idea of estimating functionals T [.], defined on the
space of distribution functions, G, that were obtained through a trimmed
likelihood principle: to trim a proportion 0 ≤ α < 1 observations which
are least likely to occur as indicated by the likelihood. Specifically, define a
functional on the product space G×Θ:

S(F, θ) =

∫
logfθ(x)J [F{y : logfθ(y) ≤ logfθ(x)}]dF (x),

where

J(t) =

{
0 if t ≤ α
1 if α < t ≤ 1

.

Then define the estimating functional T at F as

T [F ] = argΘ max
Θ
{S(F, θ)}.

When the parametric family is normal and θ = (µ, σ), where µ is a loca-
tion parameter and Fn is the empirical distribution function formed from a
sample Y1, ..., Yn, where Yi = µ0 + εi, then

T [Fn]

= argθ max
θ

{∫ [
−1

2
lnσ2− (x − µ)2

2σ2

]
J [Fn{y : (y−µ)2≥(x−µ)2}]dFn(x)

}
.
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In practice, if ri(µ) = Yi − µ and r2
1:n ≤ r2

2:n ≤ ... ≤ r2
n:n are the ordered

squared residuals, trimming exactly α = g/n observations in the likelihood
is equivalent to choosing the location estimator to satisfy

µ̂(g) = argµ min
µ

h∑
i=1

r2
i:n,(2.1)

where h = n− g. The variance estimator is

σ2(g) =
1

h

h∑
i=1

r2(µ̂)i:n(2.2)

(Bednarski and Clarke, 1993, Clarke, 1994). The estimator for variance is
asymptotically biased. For a fixed α a consistent estimator for σ2 is

σ̂2 =
(1− α)σ2

1− α−
√

2
πzα/2 exp(−1

2z
2
α/2)

,(2.3)

where Φ(zα/2) = 1− α/2. When h = [n2 ] + 1 equation (2.1) defines the LTS
estimator of Rousseeuw (1984). For fixed α the asymptotic distribution of√
n(µ̂− µ0) is normal with asymptotic variance

var(σ2, α) =
σ2

{1− α−
√

2
πzα/2 exp(−1

2z
2
α/2)}2

.(2.4)

In Clarke (1994) it is suggested to choose the proportion of trimming adap-
tively to minimize var(σ2, α) using appropriate estimates of σ2 based on
trimmed samples. Note that if in fact there are g outliers , one would ex-
pect the estimator σ2(g) to be the best estimate of σ2, rather than σ̂2(g)
which would be slightly inflated. Denoting

Vn(g) = var(σ2(g), g/n),(2.5)

the adaptive trimmed likelihood estimator is then µ̂ATL = µ̂(g̃), where g̃
satisfies

Vn(g̃) = min
0≤g≤G∗(n)

Vn(g).(2.6)

Empirically the location estimator of this adaptive approach has high effi-
ciency at the normal model as described by option (4) of Clarke (1994).

Generalizing to regression we get

β̂(g) = argβ min
β

h∑
i=1

(r2(β))i:n,(2.7)
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where ri(β) = Yi − xTi β, and the analogous estimator for variance adjusted
to be ”unbiased” is then

σ̃2(g) =
1

h− p

h∑
i=1

(r2(β̂))i:n.

An algorithm to solve for β̂(g) is given here using adaption of notation from
Ruppert (1992).

Given g , the observations ’trimmed’, in the sense of trimming the like-
lihood, are those observations corresponding to ri’s not found in the sum
(2.7). These are potential outliers. The algorithm which the author calls
ATLA follows.

Define Jl to be the l ’th sample {j1l , ..., jgl} from the N subsamples
chosen from the first n positive integers. Consider the following algorithm:

1. Initialize S2
0α =∞, l = 1 and J̃ = {1, ..., g}.

REPEAT WHILE l ≤ N.

2. Let βl solve Yi = xTi βl for i 6∈ Jl , (fit by least squares).

3. Let S2
l =

∑h
i=1(r2(βl ))i:n.

4. If S2
l < S2

0α, then do:

(i) β̃ ← βl ,

(ii) S2
0α ← Sl ,

(iii) J̃ ← Jl .

5. l ← l + 1.

On running the above algorithm for fixed g then β̂(g) = β̃, σ̃2(g) =
S2

0α/(h− p) and the set of observation numbers, J̃ , is effectively a function
identifying g potential outliers; call it J̃(g). To define the ATL estimator let
Vn(g) = var(σ̃2(g), g/n) and choose g̃ to satisfy (2.6). Then

β̂ATL = β̂(g̃) and σ̂2
ATL = σ̃2(g̃).
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The choice for G∗(n) is (1.2) or something smaller chosen by the statistician.
The outliers identified by ATLA are then given by J̃(g̃). Plots illus-

trating the stability or otherwise of the trimmed likelihood estimates can be
made for σ̂2(g) for different g. Here σ̂2(g) is given by (2.3) with α = g/n
and σ2(g) replaced by σ̃2(g). Storing in tables J̃(g) for different g highlights
the order of importance of potential outliers. Ryan (1995) has highlighted
the idea of plotting J̃(g) for different g. ATLA goes beyond listing simply
the J̃(g) in actually identifying the outliers J̃(g̃) specifically.

3. Examples of ATLA analysis

Example 3.1. One influential data point.
The technique of using ATLA is illustrated in this example with one point
of influence, corresponding to a high leverage point. Cook and Weisberg
(1982) discuss influential points in terms of leverage and more recently
Rousseeuw and Van Zomeron (1990) advocate a display to clasify data into
regular observations, vertical outliers, good leverage points, and bad lever-
age points. Generating seven data points using a model Yj = 1 + xj + εj ;
j = 1, ..., 7, where the εj are then obtained by drawing from a standard nor-
mal distribution, and choosing the {xj} to give one clear leverage point, gave
values {(xj , Yj)} to be (0, 1.61), (1, 1.54), (2, 2.81), (3, 5.2), (4, 5.74), (5, 7.93)
and (20, 20.95). Clearly x7 = 20 yields a large leverage point, (x7, Y7) being
a good point of influence as ε7 was generated from the normal distribution.
The simple linear model Y = β0 + β1x + ε is fitted using ATLA yielding
Table 3.1.1.

Table 3.1.1. Example with one ‘good point’ of influence.

g Vn(g) J̃(g) β̂(g)
g̃ = 0 0.844 - 1.62 0.98

1 2.348 6 1.39 0.98
2 3.861 1,7 -0.07 1.57
3 9.957 1,4,7 -0.21 1.57

The good point of influence is retained with g̃ = 0, yielding an efficient
estimate under the model.

If in fact the leverage point was a ’bad’ point of influence given by
(x7, Y7) = (20,−14) so that ε7 = −35.0, an unlikely value to be drawn from
the standard normal distribution, then we obtain the analysis of Table 3.1.2.
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Figure 1. Least squares and ATLA estimates for data with one ”good”
point of influence.

Figure 2. Least squares fitted line — and ATLA fitted line - - - for
data with one bad point of influence ×.
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Table 3.1.2. Example with one ‘bad’ point of influence.

g Vn(g) J̃ β̂(g)
0 93.94 - 5.99 -0.89

g̃ = 1 1.97 7 0.81 1.33
2 3.86 1,7 -0.07 1.57
3 9.96 1,4,7 -0.21 1.57

Figures 1 and 2 illustrate the difference between least squares fitted lines
when fitting the respective data sets. The least squares and ATLA fits
agree when there is one ’good’ point of influence. The ATLA fit on the
other hand is equivalent to the least squares fit of the data with the ’bad’
point of influence excluded in the second analysis.

Example 3.2. Modified data of wood specific gravity.
Rousseeuw (1984) motivated LMS with an example containing multidimen-
sional real data. Table 2 of that paper gives 20 observations for which
there are five independent variables and an intercept. The data were for-
mulated by replacing 4 observations from a data set given by Draper and
Smith (1967, p. 227) by outliers. Observations 4,6,8, and 19 are identified
by LMS as being outlying. These observations do not appear to be obvi-
ous outliers from the least squares analysis. Table 3.2.1 demonstrates how
ATLA picked out the 4 outliers. Here (1.2) gives G∗(20) = 7. When g = 7
there are N=77,520 least squares estimates to be calculated to evaluate
β̂(7). This took the MATLAB algorithm 1,735 cpu seconds to run on a Sun
Sparcstation.

Table 3.2.1. Analysis on modified data on wood specific gravity from
Rousseeuw (1984, p. 875).

g Vn(g)× 104 J̃(g)
0 5.8 -
1 7.1 11
2 9.0 3,11
3 10.7 7,11,14

g̃ = 4 4.5 4,6,8,19
5 4.7 4,5,6,8,19
6 5.9 4,5,6,8,12,19
7 5.9 1,4,5,6,7,8,19
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With g̃ = 4 exactly those four observations previously identified above are
given by J̃(g̃). The resulting ATLA estimator corresponds to the least
squares estimator with these observations deleted from the sample, thus
giving the more efficient estimated regression equation ŷ = xT β̂ATL given
by

ŷ = 0.2174x1 − 0.0850x2 − 0.5643x3 − 0.4003x4 + 0.6074x5 + 0.3773,

where x1, ..., x5 represent the five independent variables. It is more efficient
than LTS or LMS.

Example 3.3 . Telephone data of the belgian statistical survey.
Rousseeuw and Yohai (1984) introduce S-estimators which have breakdown
point one half and illustrate their estimator in an example with a large
fraction of outliers. The data given in Table 1 of that paper consists of 24
observations from 1950 to 1973 with the dependent variable being the total
number of international calls made, and the independent variable is the year.
The data contains heavy contamination and observations 14 to 21 or years
1963 to 1970 are spurious, since in fact according to Rousseeuw and Yohai,
in this period another recording system was used, which only gave the total
number of minutes of these calls. Table 3.3.1 gives an analysis using ATLA.
Since for these data it was observed that J̃(g) ⊃ J̃(g−1), g = 1, ..., 11, only
the observation in J̃(g)\J̃(g−1) is reported. Formula (1.2) gives G∗(24)=11.

Table 3.3.1. Analysis of telephone data.

g Vn(g) J̃(g)\J̃(g − 1) g Vn(g) J̃(g)\J̃(g − 1)
0 31.61 - 6 2.53 15
1 44.03 20 7 0.42 21
2 52.95 19 g̃ = 8 0.28 14
3 59.37 18 9 0.33 1
4 59.33 17 10 0.37 22
5 48.96 16 11 0.37 2

The ATL estimator corresponds to calculating the least squares estimator
on the data set with observations in J̃(8) deleted. Here J̃(8) corresponds
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exactly to observations 14 to 21 and the estimated regression line is ŷ =
0.1085x − 5.16, not much different from the S-estimate of Rousseeuw and
Yohai of ŷ = 0.1121x− 5.42.

Example 3.4 . Stack loss data.
The ATLA analysis of the stack loss data of Brownlee (1965, p. 454) illus-
trates that the algorithm should not be applied routinely in all situations.
The data are 21 observations on losses of ammonia from an oxidation plant
and there are three independent variables and a constant. Several authors
mentioned in the introduction arrive at the conclusion that there are four
suspected outliers, corresponding to observations 1, 3, 4 and 21. Curiously
in the ATLA investigation of the data it was observed that as for the tele-
phone data J̃(g) ⊃ J̃(g − 1) for g = 1, 8. Since G∗(21) = 9 in formula (1.2)
proved out of bounds for computing β̂(9) because of computational time
needed, it was assumed that J̃(9) ⊃ J̃(8) whence an obvious adjustment to
the algorithm allowed easy computation of β̂(9) under that assumption.

Table 3.4.1. Analysis of Brownlee stack loss data.

g Vn(g) J̃(g)\J̃(g − 1) g Vn(g) J̃(g)\J̃(g − 1)
0 10.52 - 5 12.27 13
1 12.38 21 6 15.90 20
2 12.11 4 7 18.94 2
3 14.84 3 8 15.97 14
4 11.71 1 9∗ 17.00 8

* Entry for g = 9 calculated assuming J̃(9) ⊃ J̃(8).

Importantly, the first four observations given by the algorithm as potential
outliers were observations 21,4,3 and 1. However, routine ATLA analysis
of the data in Table 3.4.1 yields g̃ = 0, giving zero observations trimmed,
whereupon ATLA and least squares agree. The objective function mini-
mized has another local minima V21(4) not much different to V21(0). J̃(4)
indicates the aforementioned alleged outliers. Continuing with further in-
vestigation of the variance estimates given by (2.3), there is a suggestion
that the data may not be normal. Estimates σ̂2(g) of σ2 are obtained under
the assumption of normality and one expects that, apart from small sample
biases, estimates σ̂2(g) would converge to σ2 fairly uniformly over the range
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0 ≤ g ≤ 9. But plotting σ̂2(g) along with the simulated expected values
of σ̂2(g) when the variances are estimated from normal data of size n = 21
generated with variance σ2 = 10.52 gives the plots in Figure 3. Clearly the
departure from the expected variances is an indication of non-normality.

Figure 3. Plot of σ̂2(g) for Brownlee stack loss data. Also plotted
is the expected value of σ̂2(g) for data generated from a
normal sample with variance σ2 = 10.52 as obtained through
simulation. This is denoted by —-.

This evidence supports observations by Atkinson (1981, 1986) and Chambers
and Heathcote (1981) that the data are not normally distributed, and should
be transformed. It also highlights the observations which do not appear to
agree with the bulk of the data when a transformation is not used.

Example 3.5 . Scottish hill races data.
Atkinson (1986b) originally reported and analysed this data set. A more
recent analysis is given in Venables and Ripley (1994). The dependent vari-
able is the record time in minutes and the independent variables are distance
in miles and climb feet. There are 35 observations whence a bound on com-
putation time of ATLA required G∗(35) = 8, whereas formula (1.2) yields
G∗(35) = 16. Atkinson’s analysis illustrates how normal plots of studentized
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residuals reveal observations 7 and 18 as outliers. When these two observa-
tions are deleted, then an additional plot reveals that observation 33 is an
outlier, the point being that observations 7 and 18 mask the presence of an
outlier in observation 33. LMS in fact identifies observations 7,18,11,33 and
35 as having the largest absolute residuals and worthy of further attention,
but Atkinson finds observations 11 and 35 agree with the bulk of the data.

Figure 4. Plot of σ̂2(g) for Scottish hill races data.

In a single analysis using ATLA the observations 7,18 and 33 are identified
as outlying in Table 3.5.1.

Table 3.5.1. Analysis of Scottish hill races data.

g Vn(g) J̃(g)\J̃(g − 1) g Vn(g) J̃(g)\J̃(g − 1)
0 217.9 - 5 89.8 6
1 124.3 18 6 103.1 8
2 82.8 7 7 113.9 14

g̃ = 3 69.8 33 8 130.0 30
4 78.2 19
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For these data the assumption of normality appears to be supported for
observations other than the identified g̃ = 3 outliers. A plot of σ̂2(g) against
g indicates that estimates of σ2 stabilize for g ≥ 3 as one would hope if indeed
the data were normal. The plot in Figure 4 is extended up to G∗(n) = 16 by
assuming J̃(g) ⊃ J̃(g− 1) for g = 9, ..., 16. This allowed for easy calculation
beyond the computed J̃(8) which was arrived at by ATLA.

4. Monte carlo performance

In this section we report results of Monte Carlo experiments to examine
the size and power of the method discussed in this article. All simulations
were carried out using MATLAB version 4.2c on a Sun Sparc10 using an
operating system SunOS 4.x . The study is limited by the need to keep the
computing time for ATLA within bounds. For this reason the sample size
is set to n = 15 and p is set to 2 (simple regression). As an indication of the
computing time needed, in carrying out ATLA on 1,000 different simulated
samples generated from a normal regression model, the computing time
could be as much as 70 hours. In this sense the study is extensive. Here we
report similar experiments to Kianifard and Swallow (1989, 1990) and Hadi
and Simonoff (1993).

The data sets for both the null and alternative cases are generated from
the model

yj = β0 + β1xj + εj , j = K + 1, ..., 15 ,

where xj ∼ U(0, 15) for j = K + 1, ..., 15 and where β0 = 1 and β1 = 1.
Values of K are chosen for each experiment between 1 and G∗(15) = 7.
Observations for j = 1, ...,K are generated via

yj = β0 + β1xj + c+ εj ,

where to investigate low leverage outliers values xj = 8.5 − 0.25(j − 1)
for j = 1, ...,K are chosen, and to investigate high leverage outliers values
xj = 20 − 0.25(j − 1) for j = 1, ...,K are chosen respectively. For all
j = 1, ..., 15 the εj are random standard normal errors. Values of c are
chosen to either reflect the normal regression model, viz., c = 0, or potential
outliers, where c = −4 or less.

Simulations for the null regression model with c = 0 were carried out
for both low leverage outliers and for high leverage outliers. For each K
1,000 samples were generated. For each simulation the number of samples
trimmed by ATLA was fewer than 10. This suggests the size of the ATL
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outlier detection procedure is less than 0.01, much smaller than either of the
procedures of Hadi and Simonoff (1993) which require as an inbuilt feature
of their respective methods a size of ′α = 0.05′.

To investigate the power of ATLA to identify outliers, the value of c
was allowed to range from −4 to −13. However, in all cases the power
increased as c decreased until a plateau was reached. This was apart from
minor variation due to sampling error. Rather than report power for all
values of c only values of c are reported up until a plateau is reached.

Simulation results are summarized in Table 4.1 for low leverage points
and Table 4.2 for high leverage points. We report the frequency with which
exactly the first K observations are identified as outliers, p1, the frequency
with which at least one outlier is identified, p2, the frequency with which
there is false identification, p3, and the frequency with which at least all
the K outliers are trimmed, p4. In addition the overall number of samples
trimmed by ATLA is recorded as p5. All of the simulations for values of c
different from zero and each K involved 100 samples.

To investigate the nature of local and global minima of the objective
function Vn(g) the frequency with which these occurred at each value of
g = 0, 1, ..., 7 was recorded. The local minima are indicated by LM and the
global minima by GM .

Table 4.1. Low leverage points.

K = 1

c p1 p2 p3 p4 p5 g = 0 1 2 3 4 5 6 7

0 0 1 6 1 6 GM 994 2 2 0 1 0 0 1
LM 998 2 11 26 35 55 85 135

-4 95 100 5 100 100 GM 0 95 1 0 1 1 1 1
LM 0 98 1 2 3 7 6 10

K = 2
0 0 2 6 0 6 GM 994 3 0 0 0 2 1 0

LM 997 3 12 18 36 36 78 135

-4 89 100 11 100 100 GM 0 0 89 3 2 1 2 3
LM 100 0 97 3 4 7 8 14

-5 97 100 3 100 100 GM 0 0 97 3 0 0 0 0
LM 100 0 97 3 1 5 5 11
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K = 3

0 0 3 9 0 10 GM 990 5 1 2 1 1 0 0
LM 994 6 3 20 34 48 73 153

-4 89 100 11 100 100 GM 0 0 0 89 6 1 1 3
LM 100 0 0 92 7 2 5 13

-5 91 100 9 100 100 GM 0 0 0 91 4 1 3 1
LM 100 0 0 96 4 1 7 10

K = 4

0 0 2 4 0 4 GM 996 2 0 0 1 0 1 0
LM 998 2 13 18 33 50 66 145

-4 92 100 8 100 100 GM 0 0 0 0 92 4 2 2
LM 100 0 0 0 94 4 8 14

-5 91 100 9 100 100 GM 0 0 0 0 91 4 3 2
LM 100 0 1 0 95 4 5 12

K = 5

0 0 6 4 0 6 GM 994 2 0 0 1 2 0 1
LM 998 2 11 22 29 44 73 141

-4 75 90 16 90 91 GM 0 0 0 0 0 84 11 5
LM 100 0 1 1 0 89 11 10

-5 84 100 16 100 100 GM 0 0 0 0 0 84 11 5
LM 100 0 1 1 0 89 11 10

K = 6

0 5 5 0 0 5 GM 993 3 0 1 1 0 1 1
LM 997 3 12 13 39 52 88 132

-4 26 39 21 37 47 GM 53 0 1 0 2 2 26 16
LM 100 0 3 6 22 4 72 21

-5 63 78 18 77 81 GM 19 0 1 1 0 1 63 15
LM 100 0 7 13 12 1 82 16

-6 81 92 14 92 95 GM 5 0 0 0 2 1 81 11
LM 100 0 7 13 12 1 82 16

-12 90 100 10 100 100 GM 0 0 0 0 0 0 90 10
LM 100 0 2 14 12 0 90 10
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K = 7

0 0 1 4 0 4 GM 996 1 1 0 1 0 1 0
LM 999 1 16 23 29 48 86 139

-4 7 9 19 7 26 GM 74 1 3 3 5 3 2 9
LM 99 1 6 11 29 26 12 66

-5 15 20 18 15 33 GM 67 0 1 4 4 3 3 18
LM 99 1 8 16 23 23 11 78

-6 37 40 20 37 57 GM 43 1 0 4 6 3 4 39
LM 99 1 4 18 27 29 7 90

-9 91 91 6 91 97 GM 3 1 0 1 1 3 0 91
LM 99 1 7 15 26 31 0 99

It is a feature of the results that for low leverage outliers andK = 1, ..., 4 that
the power of the ATLA in identifying exactly the K outliers, as illustrated
by values of p1, is remarkably high in the order of 90% when c = −4.
The fact that in this case 100% of samples have a subsample that contains
the K outliers which is trimmed by ATLA as indicated by values of p4

demonstrates that the algorithm tends to at least cull the outliers in these
situations. For K = 5, which indicates that a significant proportion of the
data are outliers, the power remains high, with p1 = 75% and p4 = 90%
for c = −4, while for c = −5 a value p4 = 100% is observed. For this
asymmetric contamination the value of c has to increase in magnitude for
the power to be retained when K = 6 and K = 7, but nevertheless ATLA
can identify large outlier sets in this case.

Table 4.2. High leverage points.

K = 1

c p1 p2 p3 p4 p5 g = 0 1 2 3 4 5 6 7

0 0 1 7 1 7 GM 993 4 1 0 1 1 0 0
LM 996 4 8 24 41 45 75 148

-4 95 100 5 100 100 GM 0 95 1 0 1 1 1 1
LM 0 98 1 2 3 7 6 10
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K = 2

0 0 2 3 1 4 GM 996 3 0 0 0 0 1 0
LM 997 3 8 23 34 40 91 127

-4 89 100 11 100 100 GM 0 0 89 3 2 1 2 3
LM 100 0 97 3 4 7 8 14

-5 97 100 3 100 100 GM 0 0 97 3 0 0 0 0
LM 100 0 97 3 1 5 5 11

K = 3

0 0 3 5 0 7 GM 993 4 1 1 0 1 0 0
LM 996 4 8 21 31 54 71 126

-4 82 91 11 91 93 GM 7 1 0 82 5 1 1 3
LM 99 1 0 92 6 3 6 14

-5 89 98 9 98 98 GM 2 0 0 89 4 1 3 1
LM 99 1 0 92 6 3 6 14

-6 93 100 7 100 100 GM 0 0 0 96 4 1 7 10
LM 100 0 0 96 4 1 7 10

K = 4

0 0 2 2 0 2 GM 998 0 0 1 0 1 0 0
LM 1000 0 7 14 36 50 75 137

-4 39 46 8 46 47 GM 53 0 0 0 39 4 2 2
LM 100 0 2 0 93 4 9 13

-5 69 78 12 78 81 GM 19 0 0 0 70 4 4 3
LM 99 1 4 0 94 4 6 13

-6 85 98 13 98 98 GM 2 0 0 0 85 5 5 3
LM 99 1 2 0 93 6 6 13

-7 90 99 9 99 99 GM 1 0 0 0 90 6 2 1
LM 100 0 1 0 94 6 5 12
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K = 5

0 0 3 1 0 3 GM 997 2 0 0 0 0 1 0
LM 998 2 8 18 43 48 79 129

-4 5 10 9 9 14 GM 86 1 1 0 0 5 6 7
LM 99 1 8 11 5 68 13 17

-5 25 36 17 34 42 GM 58 1 1 2 0 25 7 6
LM 96 2 7 11 3 80 15 13

-6 45 55 17 55 62 GM 38 0 0 1 2 46 6 7
LM 100 0 4 9 3 88 6 14

-7 62 74 18 73 80 GM 20 2 0 1 0 64 8 5
LM 98 2 5 5 1 88 10 14

-8 68 85 24 85 92 GM 8 3 1 0 1 69 11 7
LM 98 3 11 6 1 85 11 14

-9 80 95 17 95 97 GM 3 0 0 1 0 81 7 8
LM 99 1 6 10 0 90 7 18

K = 6

0 0 3 2 0 4 GM 996 1 1 1 1 0 0 0
LM 999 1 11 25 39 47 76 132

-4 0 3 12 1 12 GM 88 1 3 1 2 0 1 4
LM 99 1 9 16 21 19 29 21

-6 8 14 13 9 21 GM 79 2 1 0 2 1 9 0
LM 98 2 19 12 24 15 53 20

-8 25 39 27 33 52 GM 48 2 0 1 3 1 32 13
LM 97 3 4 19 19 6 65 22

-10 50 66 28 66 78 GM 22 1 1 1 3 3 53 16
LM 97 3 10 18 21 6 69 20

-12 76 85 17 85 93 GM 7 0 0 0 1 2 79 11
LM 99 1 5 22 17 2 86 11
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K = 7

0 0 7 4 0 7 GM 993 2 2 0 1 1 0 1
LM 998 2 16 23 44 45 69 140

-4 0 3 24 0 24 GM 76 5 4 5 4 4 0 2
LM 93 5 11 17 19 18 5 21

-8 5 12 45 5 50 GM 50 4 3 6 9 10 10 8
LM 91 8 10 19 28 27 21 41

-12 24 26 41 24 65 GM 35 2 5 4 10 10 7 27
LM 90 5 17 20 27 39 13 59

ATLA has the ability to trim either low or high leverage outliers. For high
leverage outliers with K = 1, 2, 3 values of p4 remain over 90% when c = −4.
For increasing magnitude of c the power increases. However, for an outlying
data set with almost half of the data outlying in an asymmetric fashion
such as when K = 7 the power does not become large with c as much as
−12. On the other hand the power is retained for large outlying data sets
with high leverage if the contamination is symmetric. For instance, choosing
yj = β0+β1xj+(−1)jc+εj for j = 1, ..., 6 gave a value of (p1, p2, p3, p4, p5) =
(69, 96, 19, 84, 96) for c = −4 and (p1, p2, p3, p4, p5) = (82, 100, 18, 96, 100) for
c = −5.

Interestingly one can frequently expect more than one local minima
of the objective function. Often there are two or three local minima for
data generated by the normal regression model (c = 0). When data are
generated with outliers (c 6= 0), there may still exist local minima at g = 0
for Vn(g) and sometimes these local minima are global minima if ATLA
is unable to detect the outliers (as for example with K = 6, 7). Hence if
one suspects a group of outliers and a local minima is obtained for which
J̃(g) identifies the outliers, and where the global minima is given by Vn(0),
then further investigation is warranted. This is illustrated by the discussion
of the Brownlee Stack Loss Data. The simulations do on the other hand,
suggest that if g̃ > 0, then one should regard the subsample J̃(g̃) as outliers.

5. Discussion

The idea of minimizing an asymptotic variance associated with the trimmed
likelihood estimator follows from the discussion of the univariate location
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estimation problem (Clarke, 1994). In the application to regression one
observes a significant increase in computing time. For example, an approx-
imate upper bound for the number of least squares estimates carried out in
order to determine the ATL estimator in a sample of size n is 2n−1. Natu-
rally if G∗(n) is much less than [n/2], either because p is large or simply
because G∗(n) is chosen to be much smaller such as in Example 3.5, then
this increases the possible sample size n for which ATLA can feasibly be
applied. An important advantage of ATLA is that it does not necessarily
require as a matter of course the interpretation of plots which may require
some statistical expertise. If ATLA identifies several points as outlying the
simulations of Section 4 and the data analysis of Section 3 would suggest
that these points are definitely outliers which should be rejected from the
sample. The global algorithm given is illustrated to work well on several
known data sets and in simulation.

The one case where the global algorithm does not identify the outliers
explicitly, but does highlight them implicitly, is for the Brownlee stack loss
data. This illustrates that plots may be required if the global minima of
Vn occurs at g = 0 and this competes with a local minima that is not too
different in magnitude and where g > 0. For this particular data, failure of
automatic outlier detection using the global algorithm is accompanied by a
general departure from distributional assumptions for the bulk of the data,
as is demonstrated by Figure 3.

The proposed use of ATLA yields a highly efficient estimator at the
normal model in the ATL estimator, and adapts to highlight and cull outliers
which may be multiple in number when outliers are present in the sample.

A suggestion by a referee was that one should take into account the
true asymptotic variance for regression, which should be var(σ2, α)(X ′X)−1.
One possibility is to use a generalised variance, which would be var(σ2, α)
/det(X ′X). However, this would not help matters, especially in the case
of the Brownlee stack loss data, well known for its leverage points. For
example if X−g is the design matrix with g observations omitted, then it
is a simple observation that 1/det(X ′X) ≤ 1/det(X ′−gX−g) and this would
tend to bias the procedure further toward selecting g = 0 as a global minima
in any generalization of (2.6), when the evidence is against this choice.

The approach introduced here for multiple outlier detection is differ-
ent from the elemental subset method of Hawkins, Bradu and Kass (1984).
Those authors introduce four variants of their procedure, and the intro-
duction here of a single method that copes with influential data points is
an advance. It is shown here the adaptive approach works in identifying
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outliers. It is a single high breakdown approach, which can work automati-
cally in identifying outliers. It does not rely on the choice of critical points
for the size of the test for outliers as do methods of Marasinghe (1985) and
Hadi and Simonoff (1993).

The current discussion focuses on the detection of outliers in regres-
sion using ATLA. It is not intended to discuss here the wider problems of
statistical inference in regression or indeed the analogous multivariate es-
timation problem, both of which can be seen as extensions to this work.
Discussion of the multivariate estimation and outlier detection problem is
found in Woodruff and Rocke (1994) and Atkinson (1994). The latter ar-
ticle highlights several references to multiple outlier detection, for example
the discussion of Davies and Gather (1993) which provides a more formal
approach to outlier detection in univariate samples.
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