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1 Introduction and historical remarks

Let D = [a, b] =
∏n

j=1

[
aj , bj

] ⊂ Rn be a bounded box and let f : D → R be
a Lebesgue measurable function. We denote with µ (A) the n-dimensional
Lebesgue measure of a measurable set A. Throughout this paper we use the
following abbreviations

α∗ = ess supf := inf
µ(B)=0

sup
x∈D\B

f (x) , max f := maxx∈D f (x) ,

α∗ = ess inff := −ess sup (−f) , min f := −max (−f) ,

arg max f := {x ∈ D | f (x) = max f } , [f ≥ α] := {x ∈ D | f (x) ≥ α} .

Analogously to the upper level set [f ≥ α] we define [f ≤ α], [f = α], [f > α]
and [α < f < ß] . We denote with

∫
[f≥α] f (x) dµ (x) the n-dimensional

Lebesgue integral of the function f over the upper level set [f ≥ α] and
assume that ess sup |f | < ∞.

We want to study the determination of the ess supf from the theoreti-
cal and numerical point of view. The classical integral global optimization
method of Chew and Zheng [1] and its modifications developed by Phú and
Hoffmann [10], Hichert, Hoffmann, Phú [5] and Hichert [3, 4] play a central
role. We propose a modification which generates a superlinearly conver-
gent level sequence. Using a Monte-Carlo implementation we compare our
modification with the original Zheng-method (further cited as ZM) [1]
for test examples with strict global maximizer. Straightforward simple pro-
gramming under MATLAB already shows that improvements of ZM are
obtained by using the above mentioned acceleration.

In our paper branching strategies (see e.g. [3, 4]) are not considered
to avoid mixing of influences of several strategies. Branching strategies are
necessary in the cases when more than one global maximizer exists, when
there are some far away local maximizers which have a function value close
to the essential supremum or when the dimension of the problem is not low.

In Section 2 we give a short review of the main ideas of ZM and its
implementation. Referring essential results of [10] Section 3 is devoted to
another description of ZM as a Newton-method replacing the mean value
of Zheng by a Newton-step for a convex volume function F . In Section 4 we
consider the Fenchel conjugate F c of the volume function F . We have found
that the smallest zero of F c again characterizes the essential supremum
of f . Using the Newton algorithm for finding this first zero and reformula-
ting the algorithm with respect to the function F we obtain in Section 5 a
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primal-dual-method (further cited as PDM) for the determination of the
essential supremum of an almost all bounded measurable function f . Under
mild conditions, the associated level sequence is superlinearly convergent to
ess supf . Straightforward implementations and tests in Section 6 show that
ZM and PDM run very stable and find the global maximum with similar
probability and accuracy. However, PDM needs in the average much less
function evaluations.

2 Integral global optimization (ZM)

2.1 Theoretical results

In [1] Chew and Zheng proposed the following theoretical method for the
determination of the global maximum of a continuous function f : D → R.

Algorithm 1. (ZM)

Initialization: Choose α0 < α∗

Iteration:

αk+1 =

∫

[f≥αk]
f (x) dµ (x)

µ [f ≥ αk]
=: Mf (αk) k = 0, 1, 2, ...(1)

Formula (1) can be interpreted that αk+1 is the mean value Mf (αk) of f
over the upper level set [f ≥ αk]. The monotonicity, upper estimation and
continuity of α → Mf (α) for all α with µ[f ≥ α] > 0 justify the definition
of Mf (ᾱ) := limα↑ᾱ Mf (α) in the case µ[f ≥ α] > 0 for all α < ᾱ and
µ[f ≥ ᾱ] = 0. It is easy to verify that Mf (α) ≤ α∗ for all levels α ≤ α∗ and
that Mf (α) = α implies α = α∗.

Proposition 1 [1]. The above defined level sequence {αk} converges mo-
notonically to the value α∗ and if f is continuous on D then

arg max f =
∞⋂

k=0

[f ≥ αk] .

The following definitions (cf. [1] and [10]) are useful to decide whenever
ess supf = sup f .

Definition 1. A measurable set S ⊂ Rn is called robust if cl intS = cl S.
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Definition 2. A function f from a measurable set D ⊂ Rn into R is called
robust if the lower level set [f < α] is robust for arbitrary real α.

Definition 3. A function f from a measurable set D ⊂ Rn into R is called
dense if µ [y − ε < f < y + ε] > 0 for each ε > 0 and each y ∈ f (D).

Proposition 2 [10].
1. Continuous functions over robust sets are robust and dense.
2. If D is a union of robust sets Dj and f is continuous on each such set

Dj then f is dense on D.
3. If f is dense or lower semi continuous or if −f is robust then ess supf =

sup f .

Remark 1. In [13] and subsequent publications the above method is out-
lined for robust functions, robust analysis included. Applications of this
method are considered e.g. in [14].

2.2 Numerical realization of ZM with Monte-Carlo strategy

The theoretically proposed method causes tremendous trouble since the in-
tegral

∫
[f≥αk] f (x) dµ (x) and the measure µ [f ≥ αk] of the upper level set

[f ≥ αk] must be numerically evaluated. This is impossible with reasonable
efforts by direct integration methods already for simple functions f . How-
ever, there is a very rough but simple and applicable Monte-Carlo approxi-
mation of the quotient in Algorithm 1. For a deeper study of the numerical
realization and theoretical results connected with it, we refer to [1, Part IV]
or [13, Chapter 6].

Let a starting level α0 < α∗ be given, e.g. by α0 = f (x0) for some
x0 ∈ D0 := D. We evaluate the function f for a sufficiently large number
of points xk ∈ D0 uniformly distributed in D0 such that t function values of
them are not smaller than α0. After ordering with respect to the function
values and renumbering the xk points, we have

f (xt) ≥ f (xt−1) ≥ · · · ≥ f (x1) ≥ α0 > f (x0) ≥ · · ·

The mean value Mf (α0) over the upper level set [f ≥ α0] can now be roughly
approximated by

M̂f (α0) :=
1
t

t∑

k=1

f (xk)
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and following the theoretical Algorithm 1

α1 = M̂f (α0)

is the next level. Now we look for a box D1 := D (x1, ..., xt) ⊃ {x1, ..., xt}
which can be expected w.r.t. the used uniform distribution of the points
evaluated above. This box is a rough approximation of the level set
[f ≥ α0]. We give a short description of this procedure in the detail [1].
For x1, ..., xt ∈ Rn we define (the upper index is the index of the coordi-
nate) xmin := min {x1, ..., xt} :=

(
min

{
x1

1, ..., x
1
t

}
, ..., min {xn

1 , ..., xn
t }

)
and

similarly xmax := max {x1, ..., xt}. Let xL := xmin − (xmax − xmin) / (t− 1)
and xR := xmax + (xmax − xmin) / (t− 1) then D1 = Πn

k=1

[
xk

L, xk
R

]
with

its measure µ (D1) = Πn
k=1

(
xk

R − xk
L

)
. The box D0 and the level α0 are

replaced by D1 and α1 in the next iteration, respectively. We can decide
to compute entirely new points in D1 or to use again some or all points
with f (xk) ≥ α1 from the previous iteration. The iteration can be stopped,

e.g. if the statistical variance V̂f (αk) = 1
t−1

∑t
k=1

(
f (xk)− M̂f (αk)

)2 ≈
1

t−1

∑t
k=1 (f (xk)− αk)

2 is smaller than a given tolerance tol > 0.

3 The volume function F of Phú and ZM

Phú made the remark in [10, p. 168]: the water volume F in (almost)
all natural lakes is convex with respect to the height α of the water surface.
This property yields new insight in the integral global optimization. We give
a new interpretation of ZM which allows improvements of the numerical
strategy. In the following two subsections we use results of the papers [5]
and [10]. We list them here without proofs.

3.1 Definition and properties of F

Let D ⊂ Rn be given with 0 < µ (D) < ∞ and assume f : D → R is
summable over D.

Definition 4. F : R → R with F (α) :=
∫
[f≥α] (f (x)− α) dµ (x) is called

volume function of f and m,m+ : R → R, with m (α) := µ [f ≥ α] ,
m+ (α) := µ [f > α] are called upper level set measure functions of f .

α∗ denotes the smallest zero of F , i.e. α∗ = sup {α |F (α) > 0} =
inf {α |F (α) = 0} = sup {α |m (α) > 0}. The volume function F has very
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interesting topological properties and is closely connected with the upper
level set measure functions.

Proposition 3. The function F is convex, Lipschitzian on R with the
constant µ (D), decreasing, nonnegative, almost everywhere differentiable on
R with the derivative F ′ (α) = −m (α), it has the subdifferential ∂F (α) =
[−m (α) ,−m+ (α)] for all α ∈ R and it is linear below α∗ with slope −µ (D)
and zero above α∗.

It is well-known that the set-valued mapping α → ∂F (α) is maximally
monotone and upper semicontinuous as set-valued mapping between the
reals. This implies immediately the left-hand continuity of m and the right-
hand continuity of m+. Especially limα↓ᾱ m (α) = m+ (ᾱ) holds.

The following statements contain relations between the behavior of f and
the continuous differentiability of F .

Proposition 4.
1. F is continuously differentiable on the open set U if and only if

µ [f = α] = 0 for all α ∈ U .
2. If W ⊃ D is an open set, f is continuously differentiable on W and
∇f (x) 6= 0 almost everywhere (a.e.) on D then µ [f = α] = 0 for all
α ∈ R.

Remark 2. Be aware that there are a continuously differentiable strictly
increasing function f on [0, 1] and a subset A ⊂ [0, 1] such that µ (A) > 0,
f ′ (x) = 0 on A and µ [f = α] = 0 for all α ∈ R ([5, Example 3.1]).

Now we investigate connections between the multiplicity of the zero α∗ of F
and the smoothness of f in some neighbourhood of x∗ ∈ D with f (x∗) = α∗.

Definition 5. Let Q = (qij)nn be a positive definite matrix with the
positive eigenvalues λk, k = 1, 2, ..., n. A modified lp-norm for some
x ∈ Rn and p ∈ [1,∞) is defined by

‖x‖Q,p =




n∑

j=1

n∑

i=1

|xi|
p
2 qij |xj |

p
2




1
p

.

We start with a simple but principal example.
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Example 1. Let f (x) = α∗ −
(
‖x− x∗‖Q,p

)p
, x ∈ Rn be given. We

calculate the measure m (α) for some α ≤ α∗. Using the known volume
formula

cn,p =
(

2
p
Γ

(
1
p

))n

/ Γ
(

n + p

p

)

for the n-dimensional lp-unit ball, we get by elementary calculations

m (α) = cn,p

n∏

i=1

λ
− 1

p

i (α∗ − α)
n
p for all α ≤ α∗.(2)

Since m is continuous, we find by integration

F (α) =
p

p + n
cn,p

n∏

i=1

λ
− 1

p

i (α∗ − α)
p+n

p for all α ≤ α∗.

If f is defined on a cube D and x∗ belongs to the interior of D then the
above formulas are valid for all α ∈ [α0, α

∗], where α0 is sufficiently close
to α∗.

If we can find lower and upper estimations of f by hyperparaboloids of the
above kind then a similar behavior can be derived in the case of a unique
global maximizer (cf. [5, Proposition 4.2]).

Definition 6. Assume that x∗ ∈ int D is a global maximizer of f and
there are two positive definite matrices Q and Q̄ with positive eigenvalues
λk and λ̄k, respectively and numbers p, p̄ ∈ [1,∞) such that

ḡ (x) := f (x∗)−
(
‖x− x∗‖Q̄,p̄

)p̄ ≤ f (x) ≤ f (x∗)−
(
‖x− x∗‖Q,p

)p
=: g (x)

for all x ∈ [g ≥ α], where α < f (x∗) is sufficiently close to f (x∗). Then x∗

is called a strict global maximizer of f of order {p̄, p}. If p̄ = p, we say
that x∗ is a strict global maximizer of f of order p.

In the following we use the abbreviation RQ :=
∏n

k=1 λ
1
n
k .

Proposition 5. If x∗ is a strict global maximizer of f of order {p̄, p} then
p ≥ p̄ and there is some α0 < α∗ such that for all α ∈ [α0, α

∗] the estimations

cn,p̄R
−n

p̄

Q̄
(α∗ − α)

n
p̄ ≤ m (α) ≤ cn,pR

−n
p

Q (α∗ − α)
n
p(3)
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and
p̄

p̄ + n
cn,p̄R

−n
p̄

Q̄
(α∗ − α)

p̄+n
p̄ ≤ F (α) ≤ p

p + n
cn,pR

−n
p

Q (α∗ − α)
p+n

p(4)

are valid.

Proof. By construction, we have [ḡ ≥ α] ⊂ [f ≥ α] ⊂ [g ≥ α] ⊂ D,
whenever α < α∗ is sufficiently close to α∗ = f (x∗). Hence µ [ḡ ≥ α] ≤
µ [f ≥ α] ≤ [g ≥ α] which gives together with (2) the estimation (3). The
integration over α implies (4).

Remark 3. F has in α∗ a root of order 1 only if m (α∗) > 0, i.e. there is a
set of global maximizers with positive Lebesgue measure – a very exceptional
case. Usually, the number of global maximizers is one or at least finite. The
last case can similarly be treated as in Proposition 5. The maximizer with
the greatest order determines the order of the root at α∗ from the left-hand
side. This means that the order of the root is in almost all practical cases
greater than one.

3.2 Newton algorithm and integral global optimization

Using the volume function F of Phú, the essential supremum α∗ can be found
by looking for the smallest zero of F . Since F is convex, decreasing, Lip-
schitzian and a.e. differentiable, the zero can be determined by the following
Newton-algorithm of [10, Algorithm 2].

Algorithm 2. (Primal method)

Initialization: α0 = f (x0) for some x0 ∈ D

Iteration:
αk+1 = αk +

F (αk)
µ [f ≥ αk]

.(5)

Because of max ∂F (αk) = −m+ (αk) this algorithm can be accelerated when
F is nondifferentiable in αk by using µ [f > αk] instead of µ [f ≥ αk]. The
global convergence of the sequence {αk} generated by Algorithm 2 is ensured
(cf. [10, Proposition 2.3]) and for arbitrary starting point already the first
iteration belongs to the interval [α∗, α∗] (cf. [10, Proposition 2.2]). It is
obvious that Algorithm 2 is only a new notation of ZM (Algorithm 1),
indeed

Mf (αk) = αk +
F (αk)

µ [f ≥ αk]
.
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However, the above notation as a Newton type method gives new insights
in the real behavior of this algorithm and yields some approvement.

Proposition 6. If µ [f ≥ α∗] > 0, i.e. ∂F (α∗) = [−µ [f ≥ α∗] , 0] is not a
singleton, then the above defined sequence {αk} is superlinearly convergent.

Proof. For a smooth F in some pointed neighbourhood on the left of
α∗ the proof is given in [5, Proposition 3.1]. If F is not differentiable
at some point in each pointed neighbourhood on the left of α∗ then, be-
cause of the strict monotonicity of the sequences {αk} and {µ [f ≥ αk]},
there exists a convex and differentiable function G such that F (αk) =
G (αk) and G′ (αk) = −µ [f ≥ αk] . Choose, e.g. G as circular arc spline
between (αk, G (αk)) and (αk+1, G (αk+1)) being tangential at these points,
where the slopes of the tangents are G′ (αk) and G′ (αk+1), respec-
tively. limk→∞G′ (αk) ≤ min ∂F (α∗) and limk→∞G′ (αk) ∈ ∂F (α∗) ([6,
Lemma 6.3.4]) show G′ (α∗ − 0) = min ∂F (α∗).

Using Proposition 5 and Remark 3, we have the estimation F (α) =
C (α∗ − α)γ + o ((α∗ − α)γ) for all α ∈ [α∗ − ε, α∗] and some γ > 1 and
ε > 0 in almost all practical cases. Hence, F ′ (α∗) = 0 and the sequence
{αk} is only linearly convergent with the convergence rate (γ − 1) /γ. It is
well-known that the modified Newton iteration

αk+1 = αk + γ
F (αk)

µ [f ≥ αk]

with the step size γ is superlinearly convergent if for all iterations the in-
equality ak ≤ α∗ can be ensured. Unfortunately, with some changes of the
step size, this can only be ensured in a small neighbourhood of α∗ (cf. [10,
Proposition 4.2]). Geometrically, the use of such step size γ > 1 means that
instead of the tangent a secant is used or the tangential support is replaced
by a support with a parabola of order γ. Hence, γ has to be modified during
the running algorithm by using suitable estimations. One can use the accel-
eration by Steffensen and Aitken (cf. [5, Algorithm 2], [4, Chapter 2.1]) or
some generalized convexity properties ([4, Chapter 2.2]).

In this paper, we propose another acceleration, which ensures the inequality
ak ≤ α∗ for all k. The conjugate F c of the volume function plays an essential
role for the construction of such an algorithm.
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4 Properties of the Fenchel conjugate F c

The conjugate function F c is defined by F c (u) = sup
α∈R (uα− F (α)).

Let ∂F c (u) = [s (u) , s+ (u)] be its subdifferential. We use the well-
known facts (cf. e.g. [6, 7]) that F c : R → R ∪ {+∞} is convex
and lower semicontinuous (l.s.c.), dom F c =

⋃
α∈R ∂F (α) = [−µ (D) , 0],

α ∈ ∂F c (u) ⇐⇒ u ∈ ∂F (α) ⇐⇒ F (α) + F c (u) = αu, α → ∂F (α) and
u → ∂F c (u) are upper semicontinuous (u.s.c.) and maximal monotone set-
valued mappings. One can easily show that α∗ = ess sup f = min ∂F c (0) =
s (0), α∗ = ess inf f = max ∂F c (−µ (D)) = s+ (−µ (D)) and that F c is
Lipschitzian on dom F c with the Lipschitz constant L = max {|α∗| , |α∗|}.
The dual variable u can be interpreted as the negative measure −m (α) of
the upper level set [f ≥ α] whenever u = min ∂F (α).

Lemma 7. Let S = (−µ (D) , 0] and let M = [α∗, α∗]. Then it holds:
1. s is continuous on S if and only if m is strictly decreasing on M.
2. m is continuous on M if and only if s is strictly decreasing on S.

Proof. 1. m is strictly decreasing if and only if ∂F c is single valued.
a) sufficiency: The upper semicontinuity of ∂F c implies the continuity of s.
b) necessity: The continuity of s implies that ∂F c is single valued.
The proof of the second statement is similar.

We show in the following that relatively weak properties of f imply contin-
uous differentiability of the conjugate F c.

Lemma 8. If f : D → R is dense, then m and m+ are strictly decreasing.

Proof. Let ε > 0 be given. Then 0 < µ [y − ε < f < y + ε] = µ [f > y − ε]
−µ [f ≥ y + ε] ≤ µ [f ≥ y − ε] − µ [f ≥ y + ε] = m (y − ε) −m (y + ε). For
m+ the proof is similar.

Proposition 9. If f is dense on D then F c is continuously differentiable
on (−µ (D) , 0) with (F c)′ (u) = s (u).

Proof. The density of f implies that m is strictly increasing which yields
the continuity of s on (−µ (D) , 0]

If we know an upper bound b of the essential supremum of f then the
transformed function f − b is everywhere non positive. In this case the
conjugate function F c has similar properties as F .
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Proposition 10. The following statements are equivalent.
(a) α∗ ≤ 0,
(b) F c (u) ≥ 0 on dom F c,
(c) F c is decreasing on dom F c.

Proof. (a)⇒(c): Let −µ (D) < u < 0. Because of the monotonicity of ∂F c,
the inequality (α− β) u ≥ 0 holds for each α ∈ ∂F c (u) and β ∈ ∂F c (0).
With α = s (u) , s+ (u) and β = s (0) it follows s (u) ≤ s+ (u) ≤ s (0) =
α∗ ≤ 0. Hence, F c is decreasing.

(c)⇒(b): F c (0) = 0, u ∈ domF c and F c decreasing imply F c (u) ≥ 0.
(b)⇒(a): F c is Lipschitzian and convex, F c (u) = 0, u < 0 and

F c (0) = 0. Hence, u → F c(u)−F c(0)
u is increasing and nonnegative. This

implies α∗ = min ∂F c (0) = limu→−0
F c(u)−F c(0)

u ≤ 0.

The smallest zero u∗ of the conjugate function F c plays a similar
role as α∗ for F provided α∗ ≤ 0. Obviously, we have u∗ :=
sup {u ∈ dom F c |F c (u) > 0}. The following two properties are essential
for the computation of u∗ with a Newton type algorithm.

Lemma 11. If α∗ ≤ 0 then α∗u∗ = 0.

Proof. u∗ < 0 implies F c (u) = 0 in [u∗, 0]. Hence ∂F c (0) = [0,+∞) and
therefore, α∗ = min ∂F c (0) = 0.

Lemma 12. If α∗ ≤ 0 and F c (u) > 0 then s (u) < 0.

Proof. The equivalence [s (u) ∈ ∂F c (u) ⇐⇒ F (s (u)) + F c (u) = u · s (u)],
and u < 0, F c (u) > 0, F (α) ≥ 0 yield s (u) < 0.

If α∗ ≤ 0 then the smallest zero u∗ = min {u ∈ dom F c |F c (u) = 0} can be
calculated by the Newton-algorithm.

Algorithm 3. (Dual method)

Initialization: u0 = −m (f (x0)) for some x0 ∈ D,

Iteration:
uk+1 = uk − F c (uk)

s (uk)
.(6)

It follows that uk ≤ u∗ for each k. Because of Lemma 12, first, the denomi-
nator s (uk) is negative as long as the value u∗ is not reached, and second,
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the sequence {uk} is strictly increasing. Together with Lemma 11 we im-
mediately obtain that either u∗ < 0 which implies α∗ = 0 or u∗ = 0 and
α∗ = min ∂F c (0). Now we investigate the convergence properties of the
sequence {uk} generated by Algorithm 3 for several constellations between
u∗ ≤ 0, α∗ ≤ 0. Be aware that u∗α∗ 6= 0 is impossible.

Case 1. u∗ < 0 and α∗ = 0
We have ∂F c (u) = {0} for all u ∈ (u∗, 0) 6= ∅. Hence (u∗, 0) ⊂ ∂F (α∗), i.e.
the zero α∗ = 0 is single. By Proposition 6, ZM generates a superlinearly
convergent sequence {αk}.

Case 2. u∗ = 0 and α∗ < 0
1. We have ∂F c (u∗) = ∂F c (0) = [s (0) , +∞) and s (0) = α∗ < 0. There-

fore, u∗ = 0 is a single zero of F c and the sequence {uk} generated by
Algorithm 3 is superlinearly convergent according to similar arguments
now used in Proposition 6 for F c. Below we quantify this behavior.

2. If, additionally, ∂F (α∗) = [−m (α∗) , 0] is a nontrivial interval then F c

is linear affine in the interval [−m (α∗) , 0] , and the algorithm stops after
finite steps.

Cases 1 and 2.2 imply µ [f ≥ α∗] > 0 which is not often satisfied.

Case 3. u∗ = 0 and α∗ = 0 implies linear convergence as the following
proposition shows.

Proposition 13. Let α∗ = u∗ = 0 and assume that p is the order of the
zero α∗of F . Then p > 1 and u∗ is a zero of F c with the order q > 1, where
1/p + 1/q = 1.

Proof. Because of s (0) = α∗ = 0 and the bounded variation of F , m is
strictly decreasing in some left-hand neighbourhood of α∗ = 0. Hence,
by Proposition 7.2, s is continuous in some left-hand neighbourhood of
u∗ = 0. Therefore, F c has in u∗ = 0 a zero of higher order which im-
plies the strict monotonicity of s, and in similar way the continuity of
m in a neighbourhood of α∗ = 0. Thus, if p, q are the order of the
associated zeros, there are some τ > 0 and continuously differentiable
functions σ, ρ : (−τ, 0] → R, in 0 from the left-hand side, such that
F (α) = |α|p σ (α) , σ (0) > 0 and F c (u) = |u|q ρ (u) , ρ (0) > 0. The
use of the Young-Fenchel transformation F (α) + F c (F ′ (α)) = αF ′ (α)
on the one hand and the elementary direct limit calculation on the
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other hand yields 0 > (1− p) σ (0) = limα→+0(F (α) − αF ′(α)) / |α|p =
− limα→+0 F c(F ′(α)) / |α|p = −ρ(0) (pσ(0))q limα→+0 |α|(p−1)q / |α|p. The
existence of the last limit implies p = (p− 1)q.

The order p and q of the zeros implies the convergence rates n / (n + p) and
n (p− 1) / (n (p− 1) + p) for Algorithm 2 and Algorithm 3, respectively.
Hence Algorithm 2 is faster for p ∈ (1, 2) and Algorithm 3 for p ∈ (2,∞).

If we have α∗ < 0 then superlinear convergence can be achieved by
Case 2. This situation can be arranged in the many practical problems. By
using some geometrical considerations, the Algorithm 3 can be modified to
a primal-dual method which can be implemented on base of Algorithm 1.
Its theoretical development and the discussion of the test are the contents
of the two next sections.

5 Acceleration by a primal-dual method (PDM)

We start with a geometrical interpretation of formula (6) in the Case 2, i.e.
when α∗ < 0. With the notation ᾱk := s (uk) we get uk+1 = uk−F c (uk) /ᾱk.
Since ᾱk = min ∂F c (uk) ∈ ∂F c (uk) we obtain with Young-Fenchel’s
equality F (ᾱk) + F c (uk) = ᾱkuk immediately

uk+1 =
F (ᾱk)

ᾱk
=

F (ᾱk)− F (0)
ᾱk − 0

.(7)

By the mean value theorem [6, Theorem 4.2.4], there is some α ∈ (ᾱk, 0)
such that uk+1 ∈ ∂F (α). Since uk+1 > uk, we can ensure by the convexity
and monotonicity of F that our choice ᾱk+1 := min {α |uk+1 ∈ ∂F (α)} =
min ∂F c (uk+1) = s (uk+1) belongs to (ᾱk, 0). Let

α̃k+1 := ᾱk + F (ᾱk) /m (ᾱk)

be the Newton iteration of ᾱk, called the primal step. Using uk ∈ ∂F (ᾱk)
and the Ray Theorem, we get |uk| /1 = F (ᾱk) / (α̃k+1 − ᾱk). From (7) it
follows with uk < 0 the update formula uk+1 = (α̃k+1 − ᾱk) |uk| /ᾱk. Hence,

uk+1 = (1− α̃k+1/ᾱk)uk

for the dual variables uk. Beside the exceptional case when Algorithm 3 fin-
ishes after finite steps (i.e. F (ᾱk) = 0), we can reformulate the Algorithm 3
in the following way.
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Algorithm 4. (PDM)

0. Initialization: Choose the tolerance ε > 0, α0 < α∗ and put u0 =
−m+ (α0).

k. Iteration

1. primal step: α̃k+1 = ᾱk + F (ᾱk) /m+ (ᾱk),
2. dual update: ûk+1 = (1− α̃k+1/ᾱk) uk,
3. primal update:

α̂k+1 = max {α |ûk+1 ∈ ∂F (α) = [−m (α) ,−m+ (α)]}
= s+ (ûk+1) .

If α̂k+1 < α̃k+1

then (a) ᾱk+1 = α̃k+1 and uk+1 = −m+ (ᾱk+1)
else (b) ᾱk+1 = α̂k+1 and uk+1 = ûk+1.

4. Stopping rule: (see also next section)

If |uk+1| < ε

then αk+1 is an approximation of ess supf .

We consider at first a simpler Algorithm 5 dropping the case α̂k+1 < α̃k+1

in Step k.3 from Algorithm 4, that means we put ᾱk+1 := α̂k+1 for all k.

Theorem 14. Let sequences {ᾱk} and {uk} be generated by Algorithm 5.
Further assume that f is Lipschitzian over the convex compact set D ⊂ Rn

with the Lipschitz-constant L, α∗ < 0 and µ [f = α] = 0 for all α ∈ [α∗, α∗].
Then (ᾱk) is superlinearly convergent to α∗ satisfying the estimation

m (ᾱk+1) < C m (ᾱk)
n+1

n(8)

with C = L/
(
|α∗|µ (D)

1
n

)
supx,y∈D ‖x− y‖.

Remark 4. If f has a finite number of global maxima xk and if f is
continuously differentiable in some neighbourhood of these points and if
we replace D by the shrinking sets Dk ⊃ [f ≥ αk] during the algorithm, a
union of finite n−dimensional boxes around the points xk, then the quotient
supx,y∈Dk

‖x−y‖
µ(Dk)

1
n

is asymptotically constant and Lk = supx∈Dk
|∇f (x)| tends

to zero for k →∞.
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Remark 5. If f has a single global maximizer of order p then we obtain
by using (3) the asymptotic estimation

(α∗ − ᾱk+1) < C
p
n

n

√
n
√

cn,p

R
(α∗ − ᾱk+1)

1+ 1
n

for k →∞.

Lemma 15 [12, Lemma 5.2]. Let D ⊂ Rn be a convex compact set with the
positive diameter d := maxx,y∈D ‖x− y‖. If f : D → R is Lipschitzian with
the constant L then

m (α) ≥ µ (D)
(dL)n (α∗ − α)n .(9)

Now we prove of Theorem 14 by using Lemma 15.

Proof. Instead of ᾱk we use here αk for simpler notation. The as-
sumptions of Theorem 14 imply that F is strictly convex and continu-
ously differentiable on R. We obtain together with Lemma 7 that F c is
strictly convex and continuously differentiable on dom F c, where the con-
tinuous differentiability at the boundary points of dom F c is only one
sided. Further, we have −s = m−1 on [−µ(D), 0], i.e. u = F ′(α)
is equivalent to α = F c′(u) for all α ∈ (α∗, α∗), all u ∈ (−µ (D) , 0),
α∗ = F c′ (−µ (D) + 0) , α∗ = F c′ (u∗ − 0) , F ′ (α∗) = −µ (D) and F ′ (α∗) =
u∗ = 0. Hence, Algorithm 3 is equivalent to Algorithm 5. With
−u = F ′ (α) the inequality (9) can be transformed in dom F c equiv-
alently to (F c′ (u∗ − 0)− F c′ (u)) ≤ dLµ (D)−1/n (u− u∗)1/n. Observing
F c′ (u) < F c′ (u∗ − 0) = α∗ < 0, the main step in Algorithm 3 can be
reformulated to uk+1 − u∗ = uk − F c (uk) /F c′ (uk) − u∗ = − (F c′ (uk))

−1

(F c (uk) + F c′ (uk) (u∗ − uk)). Using the mean-value theorem with integral
remainder, we finally obtain

m (αk+1) =
∣∣F ′ (αk+1)− F ′ (α∗)

∣∣ = |uk+1 − u∗|
≤ ∣∣F c′ (uk)

∣∣−1 ∣∣F c (uk) + F c′ (uk) (u∗ − uk)
∣∣

< |α∗|−1
∣∣∣∣
∫ 1

0

[−F c′ (uk + t (u∗ − uk)) + F c′ (uk)
]
(u∗ − uk) dt

∣∣∣∣

≤ |α∗|−1 |u∗ − uk|
∫ 1

0

∣∣F c′ (u∗)− F c′ (uk)
∣∣ dt

≤ |α∗|−1 dLµ (D)−1/n |uk − u∗|1+1/n

= |α∗|−1 dLµ (D)−1/n m (αk)
1+1/n .
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Remark 6. If f has a unique global maximizer of order p like (3) then we
get the asymptotic estimation

(
F c′ (u∗ − 0)− F c′ (u)

) ≤ (cn,p)
−p/n RQ (u− u∗)p/n

under the same assumptions for f, which analogously yields

m (αk+1) ≤ |α∗|−1 RQ (cn,p)
−p/n m (αk)

1+p/n .

We have here a quantified description of the behavior of the Lipschitz con-
stant Lk mentioned before.

Remark 7. Algorithm 4 is faster than Algorithm 5 since the sequences
{ᾱk} and {uk} are strictly increasing. If Algorithm 3 is not superlinearly
convergent then there is a finite k0 in Algorithm 4 such that ᾱk+1 = α̃k+1

at most for k ≤ k0 and ᾱk+1 = α̂k+1 for all k > k0, i.e. after k0 steps
Algorithm 4 and Algorithm 5 run identically by using the starting level ᾱk0 .
Algorithm 4 should be preferred if the iteration number k can be expected
to be small.

6 Implementation of PDM and test results

The PDM has three properties:

1. The number of function evaluations in each iteration is proportional to
the ratio qk := |ᾱk − α∗| / |ᾱk+1 − α∗|. That means, speeding up of the
level sequence increases the number of function evaluations at each iteration.

2. Because of the superlinear convergence of the level set sequence, we only
need a relatively small number of iterations to reach α∗ within a prescribed
tolerance.

3. PDM runs different from ZM only if α̃k+1 < ᾱk+1. Then we have in
each iteration the old level ᾱk and two new levels α̃k+1 and ᾱk+1.

In ZM the ratio |αk − α∗| / |αk+1 − α∗| is nearly constant and we have the
old level αk and the new level αk+1 at each iteration.

In order to benefit from property 2 as much as possible, and to minimize
the disadvantage of property 1, we choose the following strategy.

First: we do not take the level box with respect to ᾱk but the level box
with respect to α̃k+1 for determining points x with f (x) ≥ ᾱk+1.
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Second: the first level α̃k+1 is theoretically obtained by the Zheng-step
using the mean value mk of the t (already ordered) function values ᾱk ≤
f

(
xk

1

)
≤ f

(
xk

2

)
≤ · · · ≤ f

(
xk

t

)
. In the implemented algorithm we require

a uniform lower bound of the number of points xk belonging to the box
D

(
xk

s , ..., x
k
t

)
, s < t, α̃k+1 ≤ f (xs). Hence,

α̃k+1 = min {f (xt̃) ,mk} , t̃ =
⌊

t

3

⌋
.

Third: the second level α̂k+1 is theoretically given by the dual and primal
update. Again we require a uniform lower bound of the number of old points
xk belonging to the associated level box. We determine α̂′k+1 = f

(
xk

ρ

)

(theoretical level) looking for a ρ with −µ
(
D

(
xk

ρ+1, ..., x
k
t

))
≤ uk+1 ≤

−µ
(
D

(
xk

ρ, ..., x
k
t

))
by using a bisection with respect to the index ρ. Hence,

α̂k+1 = min
{
f (xt̂) , f

(
xk

ρ

)}
, t̂ =

⌊
4t

5

⌋
.

Naturally, the last uniform bound destroys the superlinear behavior of {α̂k} ,
i.e. there is some q > 0 with qk > q for all k. However, both uniform bounds
become active in the last two or three iterations before the termination. So
far we do not know the optimal choice of these bounds. Without these
bounds the PDM can run much worse than ZM, often in this case, the last
iteration before the termination costs too much function evaluations since
the quotient of measures of the new and old level box becomes too small.

We use (see appendix) the standard test functions for global minimization
(see e.g. [1] for discontinuous functions, [2, 8, 11]) of dimensions 2, 3, 4 and
5 which have only one global minimizer in some chosen box.

Each of the following 16 test problems is computed 20 times with both
methods for t = 20, 30, 40 and 60. The pseudo random number generator is
initialized by the clock. We evaluate the quality of each test by the numbers
1 to 6. k = 1, 2, ...5 stands for an absolute distance of the calculated approx-
imation to the exact optimal solution of at most 10−5+k and number 6 in any
other case. Further, we distinguished for each run the termination criteria
like ”variance ≤ tol”, ”number of function evaluations ≥ M”, ”Number of
iterations ≥ m”, ”ᾱk+1 + tol ≥ f (xt)” and ”level set measure ≤ toldim /2”.
We choose tol = 10−5, M = 2000 · dim ·t/20 and m = 10 ∗ dim. We use the
variant that at most 1/5 of the arguments with the best values can survive
for the next iteration whenever they belong to the new level set.



274 J. Hichert, A. Hoffmann, H.X. Phú and R. Reinhardt

The procedure is organized in a way that termination occurs nearly im-
mediately when the function evaluation number M is reached or after the
iteration whenever one of the above criteria is satisfied. If the last iteration
is finished by a break then dates of the previous iteration are used combined
with values of the interrupted iteration which belong to the new level.

The following table contains for t = 30 the values of fval, σfval
and quality which denote the mean value over 20 runs for the number
of function evaluations, the statistical standard deviation of the function
evaluations, and the quality of the approximation of the optimal solution
(best = 1, . . . , 6 = worst, see above), respectively.

The tests show that the number of function evaluations is in the av-
erage one and a half times to twice larger for the ZM as in the proposed
PDM. However, some essential loss of probability for finding the global
minimizer could not be noticed. Beside the number of function evaluations
both algorithms principally show the same behavior.

Case 1. If the global minimizer belongs to the interior of the first box far
enough from the boundary, then both algorithms find the global minimizer
in all tests, however PDM needs in the average significantly less (1

3 till
1
2) numbers of function evaluations (acceleration effect). The additional
bisection in PDM can be neglected with respect to the time for evaluating
the function values. The natural conjecture, that PDM is less sure in finding
the global minimizer, could not be stated in all tests. The termination
was mostly caused in the PDM by ”variance ≤ tol” or ”level set measure
≤ toldim /2”, whereas the ZM terminates more often by ”number of function
evaluations ≥ M”. Thus PDM yields some time with smaller efforts more
exact results. A lot of local minimizers does not influence the convergence
if Case 3 (see below) can be avoided.

If we compare the best run of ZM and the worst run of PDM for the
same example then the number of function evaluations was also here smaller
for the primal-dual modification. The variance with respect to the function
evaluations is for the ZM significantly smaller. Both properties together
imply that we are faster in each case with PDM but we can be much more
faster with large probability. However, with the original ZM we are in each
case slow and the probability to be a little bit faster is small.

Case 2. If the global minimizer is on the boundary of the first box then
both algorithms cut the global minimum and do not reach it, since the box
sequence is nearly nested. The acceleration effect remains true.
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Test t = 30 fval σfval / fval Quality(1..6) Term. ZM/PDM

Ex. dim
ZM

PDM
PDM
dim ZM PDM ZM Z–PD V ar fval meas

good

1 2 1.7 240 0.11 0.17 2.90 0.05 20/20

4 4 2.0 1397 0.18 0.65 4.60 0.75 03/16 17/04

5 3 1.8 195 0.11 0.15 3.55 0.05 20/20

10 3 1.8 191 0.06 0.10 3.90 –0.05 20/20

11 2 2.1 1217 0.12 0.23 3.80 0.10 19/20 01/00

13 2 1.9 330 0.07 0.11 2.50 –0.85 19/20 01/00

14 2 1.8 207 0.08 0.15 2.55 –0.50 20/20

15 2 1.6 1077 0.10 0.21 3.40 0.35 19/20 01/00

mean

3 2 1.3 509 0.09 0.12 2.00 0.00 20/20

8 2 1.5 295 0.06 0.09 2.95 –0.15 20/20

9 5 1.4 1905 0.16 0.50 4.65 0.90 01/00 09/07 10/13

12 2 1.5 266 0.08 0.14 3.60 0.05 20/20

16 2 1.4 405 0.07 0.12 2.05 –0.25 20/20

ill

2 2 1.0 3073 0.01 0.02 5.50 –0.05 20/20

6 2 1.1 2724 0.01 0.22 3.00 0.35 00/11 20/09

7 2 1.1 2588 0.09 0.21 3.80 0.35 04/14 16/06

Case 3. If the global minimizer is in a small neighbourhood of the bound-
ary of the first box and some local minimizers with nearly the same function
value are far away then both algorithms work very slowly. By chance, one
of the local (global) minimizers is approximated since the box cannot shrink
to zero within a reasonable number of function evaluations, i.e. the termi-
nation is almost always given by ”number of function evaluations ≥ M”.
Thus the exactness is more or less stochastic. An acceleration effect cannot
be noticed.

7 Conclusions

The ZM and PDM algorithms are suitable for solving global optimization
problems also in those cases when the problem functions are discontinuous.
Both methods produce approximations of upper level sets with increasing
level during the running of the algorithm. Thus, they are suitable for de-
termining all local maxima within a certain small distance to the global
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maximum. This property is essential, e.g. for the use of these methods
in semi-infinite programming. The speeding up of ZM by PDM without
essential loss of information makes integral methods more attractively.

Higher dimensional problems (6 ≤ dim ≤ 100) and the test Cases 2 and 3
can be successfully solved whenever the above methods are combined with
branch and bound strategies similar to interval methods (see, e.g. the soft-
ware BARLO [3]).
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A Appendix

No. Function or citation First box / name Solution

1
4x2 − 2x4 + 1

3
x6+

xy − 4y2 + 4y4
[−2, 2]× [−2, 0.5]
6-hump-camel-back

x ≈ 0.0898
y ≈ −0.7127
α∗ ≈ −1.0316

2

(
y − 5.1

4π2 x2 + 5
π
x− 6

)2

+ 40π−5
4π

cos(x) + 10

[−5, 10]× [2, 15]
Branin

x ≈ 3.1416
y ≈ 12.1250
α∗ ≈ 0.3979

3 see, e.g. [11]
[−2, 2]2

Goldstein-Price
(x , y) = (0,−1)
α∗ = −3

4 see, e.g. [11]
[0, 10]4

Shekel
x ≈ (4, 4, 4, 4)
α∗ ≈ −10.5364

5 see, e.g. [11]
[0, 1]3

Hartmann

w ≈ 0.1146
x ≈ 0.5556
y ≈ 0.8525
α∗ ≈ −3.863

6 see, e.g. [11]
[−1, 1]2

Rastrigin
x = (0, 0)
α∗ = −2

7 100
(
y − x2

)2
+ (x− 1)2

[−1.5, 1.5]× [−0.5, 2.5]
Rosenbrock - banana

x = (1, 1)
α∗ = 0

8
2
(
x2 + y2

)
−

⌊
x2 + y2

⌋
,

see, e.g. [1]

[−10, 10]2

piecewise continuous
x = (0, 0)
α∗ = 0

9
z :=

√∑5

k=1
|xi|, see, e.g. [1]

1 + z + sgn
(
sin

(
1
z
− 0.5

)) [−1, 1]5

unbounded variation
x = (0, 0)
α∗ = 0

10 see, e.g. [9]
[0, π]× [0, 2π]× [0, π]
Fekete points

w ≈ 2.0944
x ≈ 3.1416
y ≈ 2.0944
α∗ ≈ −3.862

11 see, e.g. [11]
[−100, 100]2

Griewank function
x = (0, 0)
α∗ = 0

12
x2 − 12x + 11 + 10 cos

(
π
2
x
)

+8 sin (πx)− 1√
2π

e−(y−0.5)2
[0, 7]× [0, 5]
Chinchinadze

x ≈ 5.6235
y ≈ 0.5000
α∗ ≈ −40.96

13 x2 + y2 [1, 2]2
x = (1, 1)
α∗ = 2

14
practical example (Ilmenau)
dispersion function I

[0.8, 1.4]×
[
10−10, 10−1

]
∞− pol at argmin

x ≈ 1.0166
y ≈ 0.00465
α∗ ≈ −40.964

15
sin (x) + 0.2 cos (10y)+

0.4 cos (5x) + (y − 5)2 10−2
[0, 10]2

Hichert

x ≈ 4.4265
y ≈ 4.7127
α∗ ≈ −1.5546

16
practical example (Ilmenau)
dispersion function II

[1, 5]× [0, 0.1]
very thin pik

x ≈ 1.0296
y = 0
α∗ ≈ 0.00170
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