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Abstract

Solutions of several problems can be modelled as solutions of
nonsmooth equations. Then, Newton-type methods for solving such
equations induce particular iteration steps (actions) and regularity
requirements in the original problems. We study these actions and
requirements for nonlinear complementarity problems (NCP’s) and
Karush–Kuhn–Tucker systems (KKT) of optimization models. We
demonstrate their dependence on the applied Newton techniques and
the corresponding reformulations. In this way, connections to SQP-
methods, to penalty-barrier methods and to general properties of
so-called NCP-functions are shown. Moreover, direct comparisons of
the hypotheses and actions in terms of the original problems become
possible. Besides, we point out the possibilities and bounds of such
methods in dependence of smoothness.
Keywords: nonsmooth functions, generalized Newton methods,
critical points, complementarity, SQP methods, inverse mappings,
regularity.
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1 Introduction

During the last fifteen years, several solution methods for nonsmooth equa-
tions have been studied and applied to variational inequalities, generalized
equations, Karush–Kuhn–Tucket (KKT) systems or nonlinear complemen-
tarity problems (NCP’s), c.f. [2, 5, 7, 8, 9, 12, 18, 19, 21, 27, 26, 29, 32, 34].
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Accordingly, one finds various conditions for convergence of nonsmooth
Newton methods (mainly written in terms of semismoothness) and may re-
formulate identical problems by means of different (nonsmooth) equations.
Especially for complementarity problems, a big number of so-called NCP
functions have been applied in order to obtain such a description as an
equation.

In this paper, we want to help to elaborate those properties of approxi-
mations and NCP functions which are important for solving KKT systems
or NCP’s as nonsmooth equations. Thus we compare in detail the regularity
assumptions and the content of a Newton step in terms of the original data
for optimization problems in standard formulation. We show how the New-
ton steps are related to second order steps for penalty and barrier functions
and how regularity requirements depend on smoothness of NCP-functions
in related models.

The general idea can be simplified as follows:

For f ∈ C1(Rn, Rn), the injectivity of Df(z∗) is crucial for both superlinear
local convergence of Newton’s method and regularity in the inverse-function
sense. For f being only locally Lipschitz (or for multifunctions) such unifying
condition does not exist. Injectivity conditions – based on different ”reason-
able” generalized derivatives (and only applicable if these derivatives may be
determined!) – describe still different desirable properties of f−1 (called e.g.
strong, metric, upper regularity, calmness...), but they may be completely
useless for Newton’s method (based on solving linear equations).

For the latter, one does not necessarily need any of the ”well-
established” derivatives, but
(i) a condition like continuous differentiability for the used ”derivative”

Rf , and
(ii) the regularity condition which requires that potential Newton-matrices

Rf(x) have uniformly bounded inverses (Newton-regularity).

Both conditions induce properties of f−1 depending essentially on Rf and
on the type of the nonsmooth function f .

Therefore, we compare these properties with standard regularity notions
and want to understand what a Newton step means in terms of the original
(KKT or NCP) problem.

The common properties of all these methods become visible by consider-
ing a particular Lipschitzian perturbation of Kojima’s system being assigned
to KKT-points.
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In §2, we present a brief summary of few (generalized) derivatives and their
relations to regularity and Lipschitzian perturbations.

In §3 we discuss the classical (nonsmooth) Newton approach based on
linear auxiliarly problems. We define Newton maps via a (multivalued)
generalization of continuous differentiability, consider pseudo-smooth and
locally PC1-functions, and show how Newton’s method and Newton maps
are related with each other. Our definitions are mainly justified by Lemma
3.2 and the Theorems 3.3, 3.6, 4.3 and 4.4.

In §4, we consider NCP’s of the form

u(x) ≥ 0, v(x) ≥ 0, 〈u(x), v(x)〉 = 0(1.1)

and elaborate those properties of NCP-functions g : R2 → R (g = 0 ⇔ (s,t)
≥ 0 and st = 0) which are important for solving the equivalent equation

fi(x) := g(ui(x)vi(x)) = 0.(1.2)

by Newton’s method. Particularly, we will obtain:
Whenever g belongs to class pNCP and g as well as u, v are locally PC1,

the Newton step at x finds a zero ξ (to put xnew = x+ ξ) of some weighted
combination of linearizations

Lg(ξ) := ag
i (ui(x) + Dui(x)ξ) + bg

i (vi(x) + Dvi(x)ξ) = 0.(1.3)

Here either cg
i = (ag

i , b
g
i ) coincides with Dg(σi), where σi = (ui(x), vi(x))

or, if g is not C1 near σi, the vector cg
i is a limit of gradients as (s,t)

→ σi. Similarly, one may interpret Du and Dv at certain non-C1-points x
of the function z = (u, v). The behavior of the coefficients as x tends to a
solution x∗ can be generally characterized. Theorem 4.3 clarifies the content
of Newton-regularity in terms of smoothness of g. For several modified NCP-
functions, c.f. [34], where g = G+h with G ∈ pNCP and h is ”locally small”,
i.e. |hi(σi)| ≤ o(x−x∗) and ‖ch

i ‖ ≤ O(x−x∗), the method can be seen as an
approximation of the Newton-process by means of G (with the same local
convergence behavior).

The applicability and the concrete actions of Newton steps for equations,
assigned to KKT-points (via NCP-or Kojima-functions), are considered and
compared in §5. There, the close connections between the methods men-
tioned, concrete problems of sequentially quadratic programming (SQP) and
penalty-barrier methods become obvious.
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Example. To illustrate forthcoming definitions, let us first mention a real
Lipschitz function f , presented in [19]. It consists of a countable number of
linear pieces and has the following properties:

(i) f and the inverse f−1 are real-valued, strongly increasing, directionally
differentiable and globally Lipschitz.

(ii) f is not Fréchet-diffenrentiable on a countable set ND with cluster point
0 /∈ ND.

(iii) f(0) = 0;Df(0) = 1, f is C1 on the open and dense set Θ1 = R\(ND ∪
{0}).
There are exactly 2 limits of derivatives Df(x), as x → 0, x ∈ Θ1, both
different from Df(0).

(iv) Newton’s method with start at any x0 ∈ Θ1, always generates an alter-
nating sequence in Θ1. Note that Θ1 has full Lebesgue measure and f
is strongly regular (cf. below).

To construct f , consider intervals I(k) = [k−1, (k − 1)−1] ⊂ R for integers
k ≥ 2, put

c(k) = 1
2 [k−1 + (k − 1)−1] (the center of I(k)),

c(2k) = 1
2 [(2k)−1 + (2k − 1)−1] (the center of I(2k))

and define

gk(x) = ak(x + c(k)), where ak = (k − 1)−1/[(k − 1)−1 + c(k)],

hk(x) = bk(x− c(2k)), where bk = k−1/[ k−1 − c(2k)].

For x > 0 define f by f(x) = min{gk(x), hk(x)} if x ∈ I(k) and f(x) = g2(x)
if x > 1. Finally, put f(0) = 0 and f(x) = −f(−x) for x < 0. The related
properties can be elementary shown, we omit the details.

Notations. Every space X, considered here, is (at least) a real Banach
space. For a subset A and C of X and r ∈ R, we denote by A + rC the
Minkowski sum {a + rc/a ∈ A, c ∈ C} and identify singletons and points.
The closed unit ball of X is denoted by Bx, so x + rBx is the closed ball
around x of radius r. If the space is evident, we omit the subscript. Having
a set M of linear operators, we put Mu = {Au/A ∈ M}.

Given a set-valued map F : X →→ Y , i.e. F (x) ⊂ Y , the set H(F, x,Ω)
is the (possibly empty) upper Hausdorff-limit of F at x with respect to Ω ⊂
X : H(F, x,Ω) := lim sup Ω3ξ→x F (ξ) := {y/y = lim η for certain (ξ, η) ∈
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(Ω, F (ξ)), ξ → x}. We write F ⊂ G if F (x) ⊂ G(x) for all x. In particular,
F may be a function on Ω ⊂ X; then η = F (ξ), and F (ξ) = ∅ for ξ ∈ X\Ω.
By C0.1 we denote the family of locally Lipschitz functions, while f ∈ C1.1

says that the first (Fréchet) derivative belongs to C0.1. Troughout, o(·)
is a function with o(0) = 0 and o(u) ‖ u ‖−1→ 0 as u → 0, while O(·)
satisfies ‖ O(u) ‖→ 0 as u → 0. If O(u) and o(u) ∈ R+, we suppose,
without loss of generality, that these functions are upper semicontinuous
(u.s.c.). Otherwise we can take osup(u) = lim supu′→u o(u′). Finally, we say
that any property holds near x if it holds for all x′ in some neighborhood
(nbhd) of x.

2 Transformations of nonsmooth equations

To show how Newton’s method can be applied to KKT-points or NCP’s
under different approaches, we write the related conditions as an equation
F (z) = 0. In §4, we will see (starting from the Newton-regularity condition
(3.7)) that strong regularity of F plays a crucial role. Though there are vari-
ous characterizations of this property in the literature, we need an analytical
one, related to the derivatives in Newton’s method. Moreover, to compare
and to understand the content of the Newton steps in all approaches, we
have to deal with and to interpret solutions of perturbed equations F t(z) = 0
(F 0 = F ) where F t − F 0 is a ”small” Lipschitz function.

For these reasons, we present here the necessary analytical background
as some kind of a crash course on analysis of sensitivity. A certain overview
on conditions for strong regularity has been given in [15].

Some generalized derivatives and function classes

Let f ∈ C0.1(Rn, Rm). We consider the following generalized derivatives (at
x in direction u). They are based on contingent derivatives [1], Thibault’s
limit sets [35] and Clarke’s generalized Jacobians [3]:

Cf(x)(u) = {w/w = lim t−1[f(x + tu′)− f(x)] for certain t ↓ 0&u′ → u}
Tf(x)(u) = {w/w = lim t−1[f(x′ + tu′)− f(x′)] for certain t ↓ 0&(x′, u′)

→ (x, u)}
δf(x)(u) = {w/w = Au,A ∈ δf(x)}.

Let Θ = {x ∈ Rn/Df(x) exists as Fréchet derivative} and put, following
Clarke, δ0f(x) = H(Df, x,Θ). Then δf(x) = conv δ0f(x). Often, δ0f(x)
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is called the B-subdifferential and denoted by δB. Notice that Cf(x) ⊂
Tf(x) ⊂ δf(x), and the inclusions may be strict. For Tf 6= δf , see [20].
Next we copy Clarke’s definition to define D0f(x) (by considering C1-points
only) and add some elementary facts.

Let Θ1 consist of all x such that f is C1 near x (C1-points) and let
D0f(x) = H(Df, x,Θ1). The pair (D0f, Θ1) fulfils D0f ≡ Df on Θ1,
it holds D0f(x) ⊂ δ0f(x) ⊂ Tf(x) and, by continuity arguments only,
one sees that D0f(x) = H(Df, x,Ω) for each open and dense subset Ω of
Θ1. However, the open set Θ1 and D0f(x) may be empty for arbitrary
f ∈ C0.1(Rn, Rm).

If Θ1 is dense in Rn, we call f pseudo-smooth. In our example, f obeys
this property, and Df(0) = 1, D0f(0) = {1

2 , 2}, δ0f(0) = {1
2 , 1, 2}, and

δf(0) = [12 , 2].
Further, we recall the class of piecewise C1 functions: f belongs to PC1

if there is a finite family of C1-functions fs such that the sets of active
indices I(x) := {s/f(x) = fs(x)} are not empty for all x ∈ Rn. We also
write f = PC1[f1, ..., fN ]. The max-norm of Rn belongs to PC1 while the
Euclidean norm does not.

Kojima’s function and Karush–Kuhn–Tucker points and NCP’s

Given an optimization problem,

min f(x) s.t. gi(x) ≤ 0 i = 1, ..., m; f, gi ∈ C2(Rn, R),(2.1)

the function F : Rn+m → Rn+m, used and perhaps first introduced by
Kojima [17], as

F1(x, y) = Df(x) + Σy+
i Dgi(x) y+

i = max{0, yi}
F2j(x, y) = gj(x)− y−i y−i = min{0, yi}

characterizes the Karush–Kuhn–Tucker points (KKT-points) (x, y) via

(x, y) is a KKT-point ⇒ (x, y + g(x)) is a zero (critical point) of F

and (x, y) is a zero of F ⇒ (x, y+) is a KKT-point.

Defining the (1 + 2m)-vector N(y) = (1, y+, y−)T , and the (n + m, 1 + 2m)-
matrix M(x) by

M(x) =

[
Df(x) Dg1(x) .... Dgm(x) 0....0
g(x) 0 .... 0 −Em

]
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(Em = (m,m)-unit matrix) the PC1-function F becomes

F (x, y) = M(x)N(y).(2.2)

The same settings are possible for additional equality constraints, we omit
them for the sake of brevity. Replacing Df and Dgi by other functions Φ
and Ψi of related dimension and smoothness, F has been called in [16] the
generalized Kojima function. For details on such functions, applications and
proofs of the following facts, we refer to [20, 15, 16]. For studying F in the
framework of PC1 equations, we refer to [30].

Given u, v : Rn → Rn, the complementarity problem (1.1) claims to find
x such that

u(x) ≥ 0, v(x) ≥ 0 and 〈u(x), v(x)〉 = 0.(2.3)

With y ∈ Rn, this can be written as

F1 := u(x)− y+ = 0; F2 := −v(x)− y− = 0.(2.4)

Here F is a generalized Kojima function, the matrix M has the form

M =

[
u −E 0
−v 0 −E

]

and y∗ = u(x∗)− v(x∗) holds at any solution x∗.

Derivatives of Kojima’s function

The usual product rule of differential calculus is a key property of generalized
Kojima functions. More precisely, if M ∈ C0.1 then

TF (x, y)(u, v) = [TM(x)(u)]N(y) + M(x)[TN(y)(v)](2.5)

(for CF , replace T by C). Note that (2.5) is not true for products of arbitrary
Lipschitz functions or multifunctions. Here, the equation holds because N
is simple in the following sense:

Given µ ∈ TN(y)(v) and any sequence of λ ↓ 0,
there are y′ → y such that
µ = lim t−1(N(y′ + λv)−N(y′)).

For details we refer to [20] and [16]. The simple-property is also fulfilled for
our perturbed Kojima functions below. Replacing TN by CN and setting
y′ = y, then being simple just means directional differentiability.
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To find TN or CN , one has only to deal with the functions ci(yi) = (y+
i , y−i )

= (y+
i , yi − y+

i ), where y+
i = 1

2(yi + |yi|) is as difficult as the absolute value
function. So one easily sees that TN = δN since Tci = δci.
The assumption M ∈ C0.1 allows the study of problems (2.1) with f, gi ∈
C1.1(Rn, R) which is a proper generalization since Hessians do not exist.

First, let M ∈ C1. Now (2.5) yields TF = δF , and shows, after the
related calculation, that δF (x, y) consists of all matrixes J(r) of the type

[
DxF1(x, y) r1Dg1(x) . . . riDgi(x) . . . rmDgm(x)

Dgi(x)ad 0 . . . −(1− ri) . . . 0

]
(2.6)

where ri = 0 if yi < 0, ri = 1 if yi > 0 and ri ∈ [0, 1] if yi = 0; briefly
r ∈ RT (y).

Note that the given ri form just δy+
i at the current point yi. The

products w = J(r)(u, v)T , r ∈ RT (y) form precisely the set TF (x, y)(u, v).
Concerning first investigations of δF we refer to [11]. For the NCP , these
matrices J(r) attain the same form (we write down the rows):

Dui(x) 0 . . .− ri . . . 0 (row i, −ri at column n + i),

−Dvi(x) 0 . . .− (1− ri) . . . 0 (row n + i,−(1− ri) at column n + i),
(2.7)

again with r ∈ RT (y), y = u(x)−v(x). Setting Rc(y, v) = {r/r ∈ RT (y) and
ri = 1 if (yi = 0 and vi > 0), ri = 0 if (yi = 0 & vi ≤ 0)}, the same products
w = J(r)(u, v)T , for r ∈ Rc(y, v), form the set CF (x, y)(u, v), which is a
singleton (the usual directional derivative) since M ∈ C1. Having M ∈ C0.1,
the elements w (for fixed r) become sets according to (2.5). The Hessian
matrix DxF1 in (2.6) must be replaced by TxF1 (or CxF1), and as already
mentioned, TF 6= δF may happen.

Regularity conditions

Strong regularity of h ∈ C(Rn, Rm) at x ∈ Rn in Robinson’s sense [31] (being
regularity in [3]) requires that, for certain nbhds U and V of x and h(x),
respectively, the restricted inverse h−1 : V → U is well-defined and locally
Lipschitz (this implies m = n).

If, less restrictive,

dist(x′, h−1(y′)) ≤ Ldist(y′, h(x′)) ∀x′ ∈ U and y′ ∈ V

holds with some fixed L, then h is called metrically regular at x.
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One says that h−1 is locally upper Lipschitz at x, if L,U and V exist in such
a manner that

U ∩ h−1(y′) ⊂ x + L‖y′ − h(x)‖B ∀y′ ∈ V.

Strong regularity of F , assigned to (2.1) or (2.3), claims (locally) the ex-
istence, uniqueness and Lipschitz behavior of the primal-dual solutions
(xa,b, ya,b) of

min f(x)− 〈a, x〉 s.t. g(x) ≤ b

or of the solutions xa,b of

u(x) ≥ a, v(x) ≥ b & 〈u(x)− a, v(x)− b〉 = 0,

respectively. In this case, we also call the related problem strongly regular
at the given point.

Theorem 21. Let h ∈ C0.1(Rn, Rn).
(i) h is strongly regular at x if and only if Th(x) is injective (i.e. 0 /∈

Th(x)(Rn\{0})
(ii) h−1 is locally upper Lipschitz at x if and only if Ch(x) is injective (in

the same sense)

Concerning statement (i), we refer to [20]; concerning (ii), we refer to [14]
where also the multivalued case has been considered.

Upper Lipschitz criteria for maps h−1 which assign, to a parameter, the
stationary points of a C1.1 optimization problem (2.1), have been derived in
[16]. Conditions for metric regularity (also called openness with linear rate
[28]) can be found in [1, Chapter 7.5] in terms of Ch, in [25] in terms of
co-derivatives and in [23] (where both derivatives have been used).

Let us return to h = F now.
For M ∈ C1, injectivity of Th means that all matrices J(r), r ∈ RT (y) in
(2.6) and (2.7), respectively, are non-singular. This is the sufficient condition
of Clarke’s inverse function Theorem [3]. In complementarity theory, one
usually works with smaller matrices C(r), defined by combinations of Dui

and Dvi. The bridge to these matrices establishes the following lemma.

Lemma 22.

(i) For any r ∈ Rn, the matrix J(r) in (2.7) is singular if and only if the
matrix C(r) with rows Ci(ri) = (1− ri)Dui(x) + riDvi(x) is singular.
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(ii) The NCP is strongly regular at x∗ if and only if the related matrices
C(r) are non-singular for all r ∈ RT (u(x∗)− v(x∗)).

The proof of (i) requires only to substitute nontrivial zeros, while (ii)
follows via Theorem 2.1.

For M ∈ C0.1, injectivity of TF is weaker than non-singularity of δF . In
addition, metric and strong regularity of F coincide as long as M ∈ C1, [6],
but not for M ∈ C1, [22].

Lipschitzian perturbations and penalty-barrier functions

Metric and strong regularity are persistent under small Lipschitzian pertur-
bations of any continuous function h (even for quite general multifunctions).
We consider here equations h + g1 = 0, h + g2 = 0, where h ∈ C(Rn, Rm)
and g1, g2 ∈ C0.1(Rn, Rm).

Theorem 23. Let h be metrically regular at a zero x0 and let gk(k = 1, 2)
have on some nbhd U of x∗, (smallest) Lipschitz rank L(gk) and sup-norm
S(gk). Then, provided that the local C0.1-norms |gk|U = max{L(gk), S(gk)}
are small enough, there is a second nbhd Ω of x∗ and a constant K such
that, to each zero x1 of h + g1 in Ω, there is a zero x2 of h + g2 satisfying
‖x1 − x2‖ ≤ K‖g1(x1)− g2(x1)‖.

For proofs and estimates of K&Ω, cf. [23] and (a bit less general) [4] and
[5]. If h is even strongly regular, then x1 and x2 are unique whenever |gk|U
are small enough. Thus, the solutions x = x(g) of h + g = 0 are locally
Lipschitz, measured by the sup-norm S(g2− g1) on U . This follows also (by
the proofs) from [31].

Perturbations of Kojima’s function may be induced by parametrizations
of problems (2.1). Then, only M(·) will vary. In the following we change N ,

Nt(y) = (1, y+
1 , . . . , y+

m, y−1 + t1 y+
1 , . . . , y−m + tm y+

m)ad.

This leads us, for (2.1), to a parametric Kojima function F t and system

F1 = Df(x) +
∑

y+
i Dgi(x) = 0,

F t
2i = gi(x)− y−i − tiy

+
i = 0.

(2.8)

For applying Theorem 2.3 to the current perturbations, it suffices to suppose
f, gi ∈ C1. For computing, with fixed t, the derivatives of F t by the rule
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(2.5), one needs f, gi ∈ C1.1 to ensure that M ∈ C0.1. Compared with J(r)
in (2.6), now the terms −(1−ri) in the lower right diagonal must be replaced
by −(1− ri + tiri), only. This will be used in §5.

Quadratic penalties: Suppose ti > 0 for all i.

Let (x, y) solve (2.8).

If yi ≤ 0, then it follows y+
i = 0 and gi(x)+ = 0.

If yi > 0, then it follows gi(x) = tiy
+
i and y+

i = t−1
i gi(x)+.

Hence, we obtain in both cases 0 = F1 = Df(x)+
∑

t−1
i gi(x)+Dgi(x), i.e. x

is a stationary point of the penalty function Pt(x) = f(x)+ 1
2

∑
t−1
i [gi(x)+]2.

Conversely, if x is stationary for Pt(x), then (x, y) with

yi = t−1
i gi(x) for gi(x) > 0 and yi = gi(x) for gi(x) ≤ 0

solves (2.8).

Logarithmic barriers: Let ti < 0 for all i.

Now, the second equation of (2.8), gi(x) = y−i +ti y
+
i (≤ 0), implies feasibility

of x in (2.1). Let (x, y) solve (2.8).

If yi ≤ 0, then gi(x) = y−i and y+
i = 0.

If yi ≤ 0, then gi(x) = ti y
+
i and y+

i = t−1
i gi(x)−.

Setting J = {i/yi > 0} we thus observe

0 = F1 = Df(x) +
∑

i∈J

t−1
i gi(x)−Dgi(x).

Hence, the point x is feasible for (2.1), fulfils gi(x) < 0 ∀i ∈ J , and is
stationary (not necessarily minimal !) for the function

Qi(x) = f(x) +
1
2

∑

i∈J

t−1
i [gi (x)−]2.

Conversely, having the latter properties, the point (x, y) with

yi = t−1
i gi(x)−(i ∈ J) and yi = gi(x) (i /∈ J)
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solves (2.8). The following transformation, due to A. Ponomarenko, estab-
lishes the bridge to usual logarithmic barrier function:

For i ∈ J , the terms gi(x)−Dgi(x) coincide with gi(x)2D(In (−gi(x)). So
we see that

t−1
i gi(x)−Dgi(x) = t−1

i gi(x)2D(In (−gi(x)) = tiy
2
i D(In (−gi(x)).

Accordingly, the actual x is also stationary for the function

Bt(x) = f(x)−
∑

i∈J

|ti| y2
i In (−gi(x)).

In this manner, zeros of the perturbed Kojima quation (2.8) and critical
points of well-known auxiliarly functions find a natural interpretation.

Under strong regularity of (2.1) at a critical point (x∗, y∗), we can say
something more:

(i) The solutions (xt, yt) of (2.8) are, for small ‖t‖, locally unique and
Lipschitz since the maps yi 7→ tiy

+
i are small Lipschitz functions in the

sense of Theorem 2.3. So, it holds

‖(xs,, ys − (xt, yt)‖ ≤ L‖s− t‖ for all s, t near the origin.

This inequality now compares solutions of different methods in a Lips-
chitzian manner.

(ii) Further, one may mix the signs of the t -components and obtains sim-
ilarly stationary points for auxiliary functions containing both penalty
and barrier terms. For example, given x, y, it is quite natural to put
ti < 0 if gi(x) < 0 and ti > 0 if gi(x) > 0 with absolute values depending
on ‖F (x, y)‖.

Moreover, similar arguments lead us to estimates of not unique
critical points (xt, yt) under metric regularity of F at (x∗, y∗) or to
estimates of (xt, yt) − (x∗, y∗) under the upper Lipschitz property of
F−1 at this point.

3 Continuous differentiability, Newton’s method
and semismoothness

Newton maps
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If f is continuously differentiable near x∗, the two approximations

f(x)− f(x∗)−Df(x∗)(x− x∗) = o1(x− x∗)

and
f(x)− f(x∗)−Df(x)(x− x∗) = o2(x− x∗)

may be replaced by each other, because both, o1 and o2 satisfy ok(u)/‖u‖
→ 0. For f(x) = x2 sinx−1 ( f(0) = 0), o1 exists, not so o2. For f(x) = |x |,
the reverse situation occurs. When applying solution methods, we need
(or have) Df at points x near a solution x∗. So the other approximation
becomes important and, if f /∈ C1, the condition must be adapted.

Let X, Y be Banach spaces, f : X → Y be any function and Rf : X →
Lin(X,Y ) be locally bounded. We say that Rf is a Newton function of f
at x∗ if

f(x∗ + u)− f(x∗)−Rf(x∗ + u)u ∈ o(u)B.(3.1)

The notation will be motivated by Lemma 3.2. At this moment, we regard
the actual property as a version of continuous differentiability for nonsmooth
functions.

Notice that the function Rf may be arbitrary at the point x∗ and is not
uniquely defined at x 6= x∗, too.

If Rf satisfies (3.1), then it is a Newton function for all g at x∗, whenever
g(x) = f(x) + o(x − x∗). Here, o = g − f is not necessarily small in the
C0.1-norm used in Theorem 2.3.

Newton functions at x∗ are selections of locally bounded maps M : X
→→ Lin (X, Y ) such that

∅ 6= M(x∗ + u)u := {Au/A ∈ M(x∗ + u)}
⊂ f(x∗ + u)− f(x∗) + o(u)B.

(3.2)

Accordingly, we call M a Newton map. This property is invariant if one
forms the union or the convex hull of two Newton maps.

Examples. If f ∈ C1(Rn, Rm) and Bnm denotes the unit ball of (n,m)-
matrices, then

M(x) = {Df(x)} and M(x) = Df(x) + ‖f(x)‖Bnm

are Newton maps at x∗. For f = PC1[f1, . . . , fN ] and f(x∗) = 0, one may
put

M(x) = {Df i(x)/i ∈ J(x)},
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where J(x) = {i/‖f i(x) − f(x)‖ ≤ ‖f(x)‖2}. Indeed, for ‖u‖ sufficiently
small, the index sets fulfil J(x∗ + u) ⊂ J(x∗). Thus,

f(x∗ + u)− f(x∗)−Df i(x∗ + u)u

∈ f i(x∗ + u)− f i(x∗)−Df i(x∗ + u)u + ‖f(x∗ + u)‖2B

⊂ oi(u)B + L2‖u‖2B.

So o(u) = L2‖u‖2 + maxi oi(u) satisfies (3.2).

Particular statements are valid for f ∈ C0.1(Rn, Rm) :
(i) To define a Newton map M0, it suffices to know a locally bounded map

M : X →→ Lin (X,Y ) satisfying (3.2) for all u in a dense subset Ω ⊂
Rn, because M0(x) := H(x, M, Ω) satisfies (3.2) for all u by continuity
arguments (with o = osup) after applying (3.2) to u′ with x∗ + u′ ∈ Ω.

(ii) Moreover, due to f(x∗ + u) − f(x∗) ⊂ Cf(x∗)(u) + o(u)B (this can
be easily shown by using finite dimension) and by the relations be-
tween C, T and δ, one sees that (3.2) implies, with possibly new o-type
function,

M(x∗ + u)u ⊂ Cf(x∗)(u) + o(u)B

⊂ Tf(x∗)(u) + o(u)B ⊂ δf(x∗)(u) + o(u)B.
(3.3)

However, f is not necessarily directionally differentiable (see Lemma 3.1),
and M has not to be a so-called approximate Jacobian [10]. Condition (3.1)
is a weak one, and Newton functions satisfy a common chain rule.

Lemma 31. (existence and chain rule for Newton functions)
(i) Every C0.1-function f : X → Y (Banach spaces) possesses, at each

x∗, a Newton function Rf being (locally) bounded by a local Lipschitz
constant L for f near x∗.

(ii) Let h : X → Y and g : Y → Z be C0.1 with Newton functions Rh at x∗

and Rg at h(x∗). Then, Rf(x) = Rg(h(x))Rh(x) is a Newton function
of f(·) = g(h(·)) at x∗.

Proof.
(i) Given u ∈ X\{0} there is a linear operator Φu : X → Y with Φu(u) =

f(x∗ + u)− f(x∗). By Hahn-Banach arguments (extension of Φu, from
the line ru, r ∈ R onto the whole space), Φu exists with bounded norm
‖Φu‖ ≤ ‖f(x∗ + u) − f(x∗)‖/‖u‖. Hence ‖Φu‖ ≤ L for small ‖u‖, for
other u define Φu = 0. So it suffices to put Rf(x∗ + u) = Φu and
o(u) = 0.
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(ii) By taking the ”derivatives” at x instead of x∗, the straightforward proof
is the same as for Fréchet derivatives. So we omit the details.

The function Rf , defined in this proof does not use any local behavior of
f near x, and Rf depends on x∗ which is often an unknown solution. So
one cannot directly apply statement (i) of Lemma 3.1 for solution methods.
One has to find Rf satisfying (3.1) without using x∗. Nevertheless, having
Rf , it can be applied like Df for Newton’s method.

Newton’s method based on linear auxiliary problems

For computing a zero x∗ of h, Newton’s method is determined by the itera-
tions

xk+1 = xk −A−1
k h(xk),

where Ak = Dh(xk) is supposed to be invertible. The locally superlinear
convergence means that, for ‖x0 − x∗‖ small enough, we have

xk+1 − x∗ = o(xk − x∗),(3.4)

which is, after substituting xk+1 and multiplying with Ak,

Ak(xk − x∗)−Ako(xk − x∗) = h(xk)− h(x∗).(3.5)

The equivalence between (3.4) and (3.5) is still true if one defines,

xk+1 = xk −A−1h(xk), A ∈ M(xk),(3.6)

where M(xk) 6= ∅ is any given set of invertible linear maps. Then, xk+1

depends on A. So we should state more precisely that (3.4) should hold
independently on the choice of A ∈ M(xk). Having uniformly bounded ‖A‖ ≤
K+ and writing x = xk, (3.5) implies that h satisfies a pointwise Lipschitz
condition at x∗:

‖h(x)− h(x∗)‖ ≤ (1 + K+)‖x− x∗‖ for x near x∗.

Having uniformly bounded ‖A−1‖ ≤ K−, now (3.5) implies

‖h(x)− h(x∗)‖ ≥ (1 + K−)−1‖x− x∗‖ for x near x∗.

This restricts h in a canonical manner and tells us that h−1 is locally upper
Lipschitz at (0, x∗). In what follows we suppose that constants K+ and K−

exist such that

‖A‖ ≤ K+ and ‖A−1‖ ≤ K− for all A ∈ M(x∗ + u) and small ‖u‖.(3.7)
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Then, interpreting o(·) as a real-valued, non-negative function and setting
u = xk − x∗, condition (3.5) takes the equivalent form

Au ∈ h(x∗ + u)− h(x∗) + o(u)B for all A ∈ M(x∗ + u)(3.8)

and describes – again equivalently – the local convergence of method (3.6)
with order

‖xk+1 − x∗‖ ≤ K−o(xk − x∗) for all initial points x0

sufficiently close to x∗.
(3.9)

But (3.8) is condition (3.2): M has to be a Newton map of h at x∗.

Lemma 32. (convergence) Supposing (3.7) and M(·) 6= ∅, the method (3.6)
fulfils condition (3.9) if and only if M satisfies (3.8) (with the same o). The
latter means that M is a Newton map of h at x∗.

Proof. Note that the norms of Ako(xk − x∗) in (3.5) are just bounded by
o(u) in (3.8).

To investigate convergence of Newton’s method for h ∈ C0.1(X, Y ), maps
M satisfying (3.2) and Lemma 3.2 have been used in [19]. There, and in
[32, 21], neither relations between M and δh nor the existence of h′(x∗; ·) or
finite dimension were needed for the interplay of the conditions (3.7), (3.8),
(3.9) in accordance with Lemma 3.2.

Semismoothness

This notion, based on Mifflin [24], has been introduced for h ∈ C0.1(Rn, Rm) :
h is semismooth at x∗ if M = δh is a Newton map at x∗, c.f. [26] and [29]
and many subsequent papers.

Often, directional derivatives h′(x∗; u) (provided they exist) replace
h(x∗ + u) − h(x∗) in (3.2) which yields equivalenty (e.g. in [7]) the con-
dition δh(x∗ + u)u ⊂ h′(x∗;u) + o(u)B. In other papers, M is a map that
approximates δh and h satisfying the related condition (3.2) is called weakly
semismooth. By the Lemma, we have to determine those functions which
allow us to find a computable Newton map M , in particular the semismooth
ones. The related concrete function classes, studied in the recent literature,
are not very big: PC1-functions and NCP -functions (mainly composed by
norms and PC1-functions). Before showing how Newton’s method can be
applied to the class locPC1 defined below, we recall conditions for semis-
moothness given in [24, Proposition 3, Theorem 2].
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Theorem 33. Convex functions f : Rn → R and maximum functions
f(x) = maxy∈Y g(x, y) of C1-functions g over compact Y are semismooth.

As a consequence, each DC-functional f (difference of convex functions) is
semismooth. The same is valid (cf. Lemma 3.1 (ii)) whenever f : Rn → Rm

has DC components since

∅ 6= δf(x) ⊂ (δfi(x), . . . , δfm(x))

However, the example in the introduction demonstrates that being pseudo-
smooth is not enough for semismoothness.

Dense subsets and approximations

If M satisfies (3.7) and (3.8) for all u in a dense subset U of Rn, then M0(x) =
H(M, x,U) is a Newton map which also fulfils (3.7). Again, evidently, if
some map M satisfies (3.7) and (3.8) then (3.7) holds for each M ′ with
∅ 6= M ′ ⊂ M , and (3.8) holds for each M ′ with ∅ 6= M ′ ⊂ conv M .

Further, one may replace M satisfying (3.7) and (3.8) by any map N as
far as

∅ 6= N(x) ⊂ M(x) + O(x− x∗)BL(X,X),

where BL(X,Y ) denotes the unit ball in Lin(X, Y ). In particular, let us
consider

N(x) = M(x) + ‖h(x)‖BL(X,Y ),(3.10)

which permits us to approximate elements of M(x) with accuracy ‖h(x)‖.
Let L be a Lipschitz rank of h near x∗.

Remark. Using N , condition (3.7) is still satisfied with each K−
N > K−.

The function o(·) in (3.8) changes only by L‖ · ‖2. Thus, the replace-
ment (3.10) will not disturb locally quadratic (or worse) convergence of
method (3.6).

Indeed, both calculations are elementary:

Let A ∈ N(x) and let x be close to x∗ and such that ‖h(x)‖ < 1/K−.
Then v = Au yields, by writing A = AM + Ah with AM ∈ M(x) and
‖Ah‖ ≤ ‖h(x)‖ :

‖v‖ ≥ ((1/K−)− ‖h(x)‖) ‖u‖,
hence

‖A−1‖ ≤ ((1/K−)− ‖h(x)‖)−1 = K−(1−K−‖h(x)‖)−1.
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The latter is smaller than K−
N for x near x∗. Further, (3.8) applied to M

ensures, for every A ∈ M(x∗ + u) and C ∈ BL(X,Y ) :

Au + ‖h(x)‖Cu ∈ h(x∗ + u)− h(x∗) + (o(u) + ‖h(x)‖ ‖u‖)B
⊂ h(x∗ + u)− h(x∗) + (o(u) + L‖u‖2)B.

We are now going to describe further functions having applicable Newton
maps.

Pseudo-smoothness and D0f

Let f ∈ C0.1(Rn, Rm) be pseudo-smooth and Θ1 be its C1-set. Then, se-
lections Rf ∈ D0f are natural candidates for being Newton functions, and
D0f = Df on Θ1.

Lemma 34. (selections of D0f) If f is pseudo-smooth and some selection
Rf of D0f is a Newton function at x∗, then D0f is a Newton map at x∗

and
Cf(x∗)(u) ⊂ D0f(x∗)u.(3.11)

Proof. The first statement holds again by continuity arguments (using
o = osup). We prove (3.11). Let a ∈ Cf(x∗)(u), i.e. a = lim a(t) where
a(t) = t−1[f(x∗ + tu) − f(x∗)] for certain t ↓ 0. The point a(t) can be
approximated by b(t) := t−1[f(x∗ + tu(t))− f(x∗)] such that

‖u(t)− u‖ < t, x∗ + tu(t) ∈ Θ1 and ‖b(t)− a(t)‖ < t.

Because of (3.1), it holds b(t) ∈ Df(x∗ + tu(t))u(t) + t−1o(tu(t))B, which
yields the assertion since a = lim a(t) = lim b(t) ∈ D0f(x∗)u as t ↓ 0.

Our example presents a pseudo-smooth, directionally differentiable real func-
tion such that D0f(x∗) 6= δ0f(x∗), (3.11) fails to hold though Df(x∗) exists,
and neither D0f nor δ0f does contain a Newton function at x∗ = 0. By
f(x) = |x| one sees that (3.11) does not hold as equation.

Locally PC1 functions

Let f be pseudo-smooth. We call f locally PC1 (and write f ∈ loc PC1) if
there is an open and dense subset Ω ⊂ Rn such that f is C1 on Ω and the
following holds: There exists a finite collection of open sets U s ⊂ Rn and of
continuous functions fs : Rn → Rm satisfying
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(i) fs is C1 on U s, and Df s(·) is uniformly continuous on U s ∩ K for
bounded sets K, and

(ii) for each x ∈ Rn there exists r > 0 such that, given y ∈ Ωr := Ω ∩
(x + rB), one finds some s with rel int conv {x, y} ⊂ U s, f s(x) =
f(x), f s(y) = f(y) and Dfs(y) = Df(y).

In comparison with (proper) PC1 functions, we do not claim that fs is C1

on the whole space.

Lemma 35. The Euclidean norm of a linear function f(y) = ‖Ay‖ and all
functions f ∈ PC1 are locally PC1.
A pseudo-smooth function f is locally PC1 if there is a covering {P s/s =
1, . . . , N} of Rn by convex polyhedrons P s such that f is C1 and Df is
uniformly continuous on intP s ∩K for all bounded sets K ⊂ Rn.
In addition, if g and h are locally PC1 and Φ ∈ C1, then f(x) =
Φ(g(x), h(x)) is again locally PC1 (provided that g, h,Φ are of appropriate
dimension).

Proof. Euclidean norm: If A 6= 0 put Ω = Rn\ ker A,U1 = Ω, f1 = f, r = 1
if x ∈ ker A and r = 1

2 dist (x, ker A) otherwise.
PC1 : Let f = PC1[f1, . . . , fN ] and I(y) = {s/fs(y) = f(y)}. It suffices

to put Ω = ∪s int I−1(s) and U s = Rn. The density of Ω can be shown by
contradiction since Rn = ∪s I−1(s).

Covering: Define f s = f, U s = int P s, Ω = ∪U s and take r small enough
such that, for 0 < ε < r, the set S(ε) := {s/(x + εB) ∩U s 6= ∅} is constant.
The existence of r is ensured since all P s are polyhedrons.

Φ : With the related sets and radii assigned to g and h, one may put Ω =
Ω(g)∩Ω(h), U sσ = U s(g)∩Uσ(h), fsσ = Φ(gs, hσ) and r = min{r(g), r(h)}.

The main motivation of the above definitions presents

Theorem 36. (Newton maps of locally PC1 functions)
Let f be a locally PC1 function and x∗ ∈ Rn. Then
(i) M = D0f is a Newton map of f at x∗.
(ii) The function o(·) in (3.2) can be taken as o(u) = ‖u‖O(‖u‖) provided

that both O(‖u‖) is a modulus of uniform continuity for all functions
Dfs(·) on U s near x∗ and O(·) is continuous.

(iii) For the composition f = g(h(x)) of locally PC1 functions g and h,
M(x) = D0g(h(x))D0h(x) is a Newton map of f at x∗.
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Remark. Modulus of uniform continuity means ‖Df s(x′) − Dfs(x′′)‖ ≤
O(‖x′ − x′′‖)∀x′, x′′ ∈ U s near x∗. In particular, if all Df s are globally
Lipschitz on U s, then o(u) ≤ K‖u‖2 holds for small ‖u‖.
Proof of Theorem 3.6. (i) and (ii): Given x∗ let r define the ball x∗+rB
in the definition of locPC1 and let y = x∗ + u ∈ Ωr. Using s according to
the definition, we can integrate and estimate

f(y)− f(x∗) = f s(y)− fs(x∗) =
∫ 1

0
Dfs(x∗ + tu) u dt

∈
∫ 1

0
Dfs(y)udt + ‖u‖ sup

0<t<1
‖Dfs(x∗ + tu)−Df s(y)‖B.

The supremum is bounded by O(‖u‖). Since Df(y) = Dfs(y), this guaran-
tees

f(x∗ + u)− f(x∗)−Df(x∗ + u)u ∈ ‖u‖O(‖u‖)B ∀x∗ + u ∈ Ωr.(3.12)

So (3.1) holds true, as far as x∗ + u belongs to a dense subset of x∗ + rB.
By density of Ω in Θ1, (3.12) also holds for D0f(x∗ + u′) at all x∗ + u′ ∈
x∗ + rB, i.e.

f(x∗ + u)− f(x∗)−D0f(x∗ + u′)u′ ⊂ ‖u′‖O(‖u′‖)B,

which verifies (i) and (ii). Finally, knowing (i), statement (iii) follows from
Lemma 3.1.

Generalized and usual Newton method for PC1 functions

Condition (3.8) also holds for all PC1-functions h, if we put

M(x) = {Dhs(x)/s ∈ I(x)}; I(x) = {s/hs(x) = h(x)}.

Condition (3.7) now means regularity of all matrices Dhs(x∗), s ∈ I(x∗).
In that case, x∗ is obviously an isolated zero of each C1-function hs, s ∈
I(x∗). So, one may apply the usual Newton method to any fixed generating
function g = hs, s ∈ I(x0), provided that ‖x0−x∗‖ is small enough such that
I(x0) ⊂ I(x∗). This simplification is possible, if all generating functions hs

are explicitly known, e.g. for all NCP’s with (u, v) ∈ C1.
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4 Some properties of NCP-functions

Preliminaries

NCP-functions are functions g : R2 → R with g−1(0) = {(s, t) ≥ 0/st = 0}.
They are used in order to formulate the NCP (2.3) as an equation

h(x) = 0 ; hi(x) := g(zi(x))(4.1)

where z = (u, v) describes an NCP. The NCP is said to be (strongly) mono-
tone if

〈u(y)− u(x), v(y)− v(x)〉 ≥ λ‖y − x‖2 ∀x, y ∈ Rn,

where λ ≥ 0 (λ > 0) is a fixed constant. A standard NCP is defined by
v(x) = x. Throughout, we suppose (at least)

g ∈ locPC1 with C1-set Θ1(g)

and z ∈ locPC1 with C1-set Θ1(z).
(4.2)

By gs, gt we denote the partial derivatives of g on Θ1(g). If x ∈ Θ1(z),
monotonicity yields (via y = x + w and first-order approximation):

λ‖w‖2 ≤
∑

i
(Dvi(x)w)(Dui(x)w).

The same remains true (consider limits for x′ → x, x′ ∈ Θ1(z)) if the pairs
(Dui(x), Dvi(x)) = (Riu(x), Riv(x)) are components of Rz(x) ∈ D0z(x),
i.e.

λ‖w‖2 ≤
∑

i
(Riu(x), w)(Riv(x), w).(4.3)

There are two principal possibilities of solving (4.1).
(i) minimize a so-called merit function, e.g.

q(x) =
1
2

∑
i
hi(x)2(4.4)

by a descent method or
(ii) solve (4.1) directly by a Newton method.

Though also combinations of both ideas are possible, we regard these cases
separately because they require different properties of g.

Case (i). Having z ∈ C1, the function g should ensure that q ∈ C1.
This is true if g satisfies
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Θ1(g) ∪ g−1(0) = R2.(4.5)

As a second requirement, Dq(x) = 0 should imply q(x) = 0. The latter
cannot be ensured for all problems, but at least for monotone standard
NCP’s. Clearly, then g has to be monotone in a certain sense, too.

We call g strongly monotone, if a b > 0∀ (a, b) ∈ D0g (s, t) and (s, t) ∈
R2\g−1(0).

Lemma 41. Let g fulfil (4.5) and be strongly monotone. Further, let the
NCP be monotone, z ∈ C1 and Dv(x) be regular. Then Dq(x) = 0 implies
q(x) = 0.

Proof. Given σ = z(x), define w by

Dvi(x)w = hi(x)gs(σi) (if hi = 0, put higs = 0).

Then,

Dq(x)w =
∑

hi(x)gs(σi)Dui(x)w +
∑

hi(x)gt(σi)Dvi(x)w
=

∑
(Dvi(x)w)(Dui(x)w) +

∑
hi(x)2gt(σi)gs(σi).

(4.6)

The first sum is non-negative by (4.3), the second one is positive if and only
if q(x) > 0.

Remarks.
(i) For strongly monotone NCP’s, the same is true if g is monotone in the

weaker sense:

ab ≥ 0 and a 6= 0 ∀(a, b) ∈ D0g(s, t) and (s, t) ∈ R2 \g−1(0),(4.7)

because now (4.6) and h(x) 6= 0 ensure w 6= 0 and 0 < λ‖w‖2 ≤∑
(Dvi(x)w)(Dui(x)w).

(ii) For z ∈ locPC1, one may replace Du and Dv by a Newton function as
in (4.3) and may define Rq(x) :=

∑
hi(x)[gs(σi)Riu(x)+ gt(σi)Riv(x)].

Then Rq(x) = 0 implies q(x) = 0 by the same arguments.
(iii) Without supposing the smoothness (4.5) one can replace (gs(σi), gt(σi))

by pairs (ai, bi) ∈ D0g(σi) and comes to the same conclusion.

Knowing that q = 0 if Dq = 0, all first order methods for minimizing a
C1- or a C1.1-function may be applied to q. NCP-functions g satisfying the
assumptions of the Lemma can be chosen arbitrarily smooth. One may also
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apply methods of nonsmooth convex optimization for minimizing Q(x) =∑
i |hi(x)| as long as G = |g| is sublinear and the NCP is monotone. Then

we have at C1 points:

Q =
∑

i
〈DG(zi(x)), zi(x)〉,

DQ(x) =
∑

i
DG(zi(x))Dzi(x)

and Q+DQ(x)w =
∑

i〈DG(zi(x)), zi(x)+Dzi(x)w〉. Directions w satisfying
〈DG(zi(x)), zi(x) + Dzi(x)w〉 = 0 ∀ i will just appear as Newton directions
in the next case, c.f. formula (4.17).

Case (ii). Now we require that the NCP function g satisfies

g ∈ locPC1 and 0 /∈ Θ1(4.8)

g is positively homogenous(4.9)

g−1(0)\{0} ⊂ Θ1(4.10)

Dg(σ) ≥ 0 and Dg(σ) 6= 0 ∀σ ∈ Θ1,(4.11)

where Θ1 = Θ1(g).

If 0 ∈ Θ1, then Dg(0) = 0, hence Dhi(x) = 0 if zi(x) = 0 and z ∈ C1.
So system (4.1) degenerates if strict complementarity (zi(x∗) 6= 0 ∀i) does
not hold. By (4.9), g belongs to the simplest functions satisfying 0 /∈
Θ1(g). Condition (4.10) guarantees that h is C1 at strictly complementary
solutions x∗. Condition (4.11), consistent with the assumption of Lemma
4.1, avoids singular derivatives of h for strictly monotone NCP’s, c.f.
Theorem 4.4.

Let pNCP be the cone of NCP-functions g satisfying (4.8) – (4.11).

Properties and construction of g ∈ pNCP

Due to (4.9), we have

Dg(σ) = Dg(λσ) ∀λ > 0 ∀σ ∈ Θ1.(4.12)

Hence, one easily derives that

D0g(0) = clDg(Θ1), g(σ) = Dg(σ)σ∀σ ∈ Θ1

and {g(σ)} = D0g(σ)σ.
(4.13)
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As a consequence, there is a positive lower bound for all gradient norms:

∃p > 0 such that ‖Dg(σ)‖ ≥ p ∀σ ∈ Θ1 and inf ‖D0g(0)‖ ≥ p.(4.14)

Moreover, Dg(e1) = λe2 and Dg(e2) = µe1 hold with certain λ, µ > 0.

Examples. Put g = gmin(s, t) := min{s, t}, an often used concave standard
function, or g = gdist(s, t) := dist((s, t),M) and, to satisfy (4.11), change
the sign of g on R2\R2+.

One can define g via any norm of R2, such that its unit sphere bdB is
piecewise smooth, has no kinks at the positive axes and fulfils e1 + e2 /∈ B,
B ⊂ e1 + e2 −R2+ and {e1, e2} ⊂ bdB. Setting Ψ(p) = e1 + e2 − p for p ∈
bdB and g(λp) = λ〈Ψ(p), p〉 for λ ≥ 0, one easily infers that g belongs to
pNPC. With the Euclidean ball, one obtains the strongly monotone concave
function g2(s, t) := s + t − ‖(s, t)‖, used e.g. in [13] (for penalization),
[7] and [12]. In addition, g can be defined (and each g ∈ pNCP can be
written) by means of a real 2π-periodic locPC1 function φ with zeros at 0
and π/2 : g(s, t) = rφ(ω), where (r, ω) are the polar coordinates of (s, t).
Then

Dg(s, t) = r−1(sφ(ω)− tDφ(ω), tφ(ω) + sDφ(ω))

for radius r>0 at (s, t) ∈ Θ1.

In particular, the natural setting φ(ω) = sin(2ω) for 0 ≤ ω ≤ π/2 with the
symmetric extension φ(ω) = −3φ((2π − ω/3) for π/2 ≤ ω ≤ 2π defines a
function gΦ which satisfies, like g2, all the already mentioned conditions.

Lemma 42. For g ∈ pNCP , it holds lim gs(σ)/g(σ) = 0 as σ → e1 in Θ1

and lim gt(σ)/g(σ) = 0 as σ → e2 in Θ1.

Proof. We apply the polar representation of Dg, put σ = (s, t) =
r(cosω, sinω) and study the first limit; ω → 0, t → 0. Due to (4.10), φ
is C1 near 0, so one may write

φ(ω) = Dφ(0)ω + o(ω) and Dφ(ω) = Dφ(0) + O(ω),

where Dφ(0) 6= 0 by (4.11). Hence

gs(σ)/g(σ)

= r−2(sφ(ω)− tDφ(ω))/φ(ω)

= r−2s− r−2t(Dφ(0) + O(ω))/(Dφ(0)ω + o(ω))

= r−2s− r−1ω−1 sinω(Dφ(0) + O(ω)/(Dφ(0) + o(ω)/ω).
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Since s → 1, r → 1 and ω−1 sinω → 1, we obtain the first assertion, the
other one is left to the reader.

While g = gmin does not fulfil the requirements of Lemma 4.1, it belongs (as
we will see) to the best NCP-functions concerning the regularity hypothesis
(3.7) for Newton’s method.

Newton’s method applied to complementarity problems

Let us now apply Newton’s method to (4.1), hi := g(zi(·)) = 0, under
assumption (4.2). The maps x 7→ D0z(x) and σ 7→ D0g(σ) are Newton
maps. Given some element Rz(x) ∈ D0z(x) let Riz(x) = (Riu(x), Riv(x))
denote its i-th component. Further, let Φ(x) consist of all matrices A having
rows Ai of the form

Ai = GiRiz(x) where Gi ∈ D0g(σi) and σi = zi(x).(4.15)

The map Φ, contained in the product of D0g(zi(·))D0zi(·), is a Newton map
for h, c.f. Theorem 3.6. Hence only condition (3.7), namely the existence of
K−, remains the problem for solving (4.1) with Newton steps

g(σi) + Aiw = 0 and xnew := x + w.(4.16)

The equation means equivalently

g(σi) + aiRiu(x)w + biRiv(x)w = 0, (ai, bi) ∈ D0g(σi)

(or) ([ai/g(σi)]Riu(x) + [bi/g(σi)]Riv(x))w = −1 if g(σi) 6= 0

and (aiRiu(x) + biRiv(x))w = 0 if g(σi) = 0.

By Lemma 4.2, we know that

ai/g(σi) → 0 and lim inf bi > 0 if x → x∗ with ui(x∗) > 0, as well as

bi/g(σi) → 0 and lim inf ai > 0 if x → x∗ with vi(x∗) > 0.

Due to (4.13), we may write (4.16) as the ”weighted equation” (see also
(1.3)):

ai(ui(x) + Riu(x)w) + bi(vi(x) + Riv(x)w) = 0, (ai, bi) ∈ D0g(σi).(4.17)

Theorem 43. (regularity condition (3.7) for NCP)
Let g ∈ pNCP, z = (u, v) ∈ C1 and x∗ be a solution of the NCP.
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(i) If condition (3.7) is fulfilled for the settings of method (4.16), then (3.7)
is also satisfied for the particular NCP function gmin{s, t} = min{s, t}.

(ii) Condition (3.7) is fulfilled if the NCP is strongly regular at x∗.
(iii) Condition (3.7) is equivalent with strong regularity of the NCP at x∗ if

the unit vectors of R2 can be connected by an arc in Θ1(g).

Proof. Recalling (4.14), it holds max{ai, bi} ≥ p for some p > 0. So, we
see that the matrices A in (4.15) are regular if and only if the same holds
for all matrices C(r, x) with rows

Ci(r, x) := (1− ri)Riu(x) + riRiv(x),

where ri = bi[ai +bi]−1, 1−ri = ai[ai +bi]−1 and (ai, bi) ∈ D0g(ui(x), vi(x)).
For z ∈ C1, these rows have the form

Ci(r, x) = (1− ri)Dui(x) + riDvi(x),

and the coefficients ri form a subset Si(x) ⊂ [0, 1]. By continuity arguments,
for showing (3.7), it suffices to consider x = x∗ only. So, (3.7) holds true if
and only if all matrices C(r, x∗) (which form a compact set) are invertible.
This condition is as weaker as smaller the sets Si(x∗) are. To study Si(x∗),
let y∗ = u(x∗) − v(x∗). If y∗i > 0 then g is C1 near (ui(x∗), vi(x∗)) and
ai = 0, bi > 0. Therefore, ri = 1. Similarly, y∗i < 0 yields ri = 0. Let
y∗i = 0. Now the pairs (ai, bi) vary in the whole set clDg(Θ1(g)), and
Si(x∗) = {bi[ai + bi]−1/(ai, bi) ∈ clDg(Θ1(g))}.

In the ”smallest case”, Si(x∗) contains 0 and 1 only. This is just the
situation for g = gmin. In the ”largest case”, the whole interval [0,1] belongs
to Si(x∗) whenever y∗i = 0. Then, nonsingularity of all C(r, x∗) coincides,
by Lemma 2.2, just with strong regularity of the NCP at x∗. So (i) and (ii)
are true. Having an (continuous) arc in Θ1(g) which connects e1 and e2, the
set Si(x∗) is connected and contains 0 and 1 (for this conclusion, one needs
z ∈ C1 and the definition of D0g via C1-points of g). So, Si(x∗) = [0, 1] for
y∗i = 0 is in fact true.

Theorem 4.3 tells us that condition (3.7), with M = D0g, is strong if
the function g is ”smooth”. In particular, the examples g2 and gφ need
the strongest regularity condition to ensure local convergence of Newton’s
method.
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Theorem 44. (uniform regularity and strict monotonicity)
Let the NCP be strictly monotone. Then, for g ∈ pNCP and z ∈ locPC1,
every matrix A in Φ(x) (4.15) is regular. Moreover, for each bounded set
X ⊂ Rn, it holds

‖A−1‖∞ ≤ nc(λp)−1 ∀x ∈ X

where c := maxi sup{‖Dzi(x)‖∞/x ∈ X ∩ Θ1(z)}, λ = λ(u, v) is the strict
monotonicity constant of NCP and p = p(g) is the constant from (4.14)
taken with the max-norm.

Proof. Suppose, one finds ε > 0, x ∈ X, A ∈ Φ(x) and some w ∈ bdB
(Euclidean sphere) such that

ε ≥ |Ai w| for all rows Ai of A.(4.18)

This corresponds to the fact that A is singular or ‖A−1‖∞ ≥ 1/ε in terms
of the maximum-norm in the image space. By definition of Φ, it holds for
certain (ai, bi) ∈ D0g(zi(x))

Aiw = aiRiu(x)w + biRiv(x)w.

Due to (4.2), we know that 1
2λ ≤ ∑

i(Riu(x), w)(Riv(x), w). Let Pi denote
these products and let Pk = maxi Pi. Since

Pk ≥ λ/n,(4.19)

The factors ϕu = Rku(x)w, ϕv = Rkv(x)w have the same (non-zero) sign.
Further, max{|ϕu|, |ϕv|} is bounded by c. So, ϕuϕv = Pk ≥ λ/n ensures
min{|ϕu|, |ϕv|} ≥ λc−1/n. Returning to (4.18), and recalling that ak ≥ 0
and bk ≥ 0, the latter yields by (4.14),

ε ≥ | ak ϕu + bk ϕv | ≥ [λ c−1/n] max {ak, bk} ≥ [λc−1/n]p.

Therefore ‖A−1‖∞ ≥ 1/ε implies 1/ε ≤ ([λc−1/n]p)−1 as asserted.

With u ≡ 0 and vi(x) = xi > 0, Theorem 4.4 fails to hold for a monotone
standard NCP: We obtain Ai = 0 because Dg(zi(x)) = (Dsg(0, xi), 0) and
Dzi(x) = (0, ei). On the other hand, the Theorem holds without strong
monotonicity of NCP whenever (4.19) remains true for some λ = λ(z) > 0
and some k = k(x,w). Moreover, if g has locally Lipschitz derivatives on
Θ1(g) and if z ∈ C1.1, then one obtains quadratic convergence because o(·)
in (3.8) now fulfils o(·) ≤ L ‖ · ‖2.



236 B. Kummer

5 Particular realizations and assigned SQP
methods

Let us assume that h in §3 coincides with Kojima’s function F (x, y), assigned
to our standard C2 optimization problem (2.1),

F1(x, y) = Df(x) +
∑

y+
i Dgi(x), F2j(x, y) = gj(x)− y−j .

Then F is PC1, and all the mentioned derivatives will satisfy (3.2). De-
pending on the choice of M (as a Newton map), we discuss condition (3.7),
imposed for points z = (x, y) near a zero z∗, and the kind of the related
problems (3.6). In all cases, we assume that z = (x, y) is the current it-
eration point and investigate the meaning of (u, v) defined by the Newton
step

(x, y)new = (x, y) + (u, v).

Case 1. Apply the usual Newton method to any fixed generating func-
tion FS of F being active at the initial point (x0, y0). The functions FS are
defined by an index set S ⊂ {1, ..., m} as

FS
1 (x, y) = Df(x) +

∑
i∈S yiDgi(x)

FS
2i(x, y) = gi(x) if i ∈ S

FS
2j(x, y) = gj(x)− yj if j ∈ {1, ...,m}\S.

Here, we assigned, to (y+
i , y−i ), the function yi → (yi, 0) if i ∈ S and yi →

(0, yi) otherwise. The initial set S0 has to be active at (x0, y0), i.e. i ∈ S0

if y0
i > 0 and j 6∈ S0 if y0

j < 0. Because S = S0 is fixed during all steps, the
iterations require

FS(x, y) + DFS(x, y)(u, v)T = 0.

The equations releated to FS
2j for j 6∈ S have the form gj(x) + Dgj(x)u =

yj + vj = ynew
j , so vj , which does not appear in other equations, may be

deleted. Thus, we solve the problem

P (S0) min f(x) s.t. gi(x) = 0 for i ∈ S0

by linearization of the related C1-Karush–Kuhn–Tucker system. Condition
(3.7) requires regularity of the Jacobians DFS(z∗) for all S, active at z∗.
This is strong regularity of all the related problems P (S) at the assigned
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point (x∗, y∗s). So condition (3.7) is weaker than strong regularity of the
original problem at the solution.

Case 2. With the Kojima–Shindo approach, one selects some set S
being active at (x, y), and makes next a Newton-step based on (changing)
S as above. The condition (3.7) is the former one.

Case 3. Applying the generalized Jacobian M = δF (= TF since f, g ∈
C2), one may take any matrix J(r) ∈ δF (z), c.f. (2.6), for the Newton step
F (z) + J(r)(u, v)T = 0.

Condition (3.7) requires just strong regularity of (2.1) at (x∗, y∗).
We study the Newton steps for the original Kojima system and the perturbed
equation (2.8) at once by considering any ti ∈ R in (2.8) and dealing with
the Newton equation

F t(z) + J(r, t)(u, v)T = 0, J(r, t) ∈ δF t(z).(5.1)

Recall that this setting represents a mixed penalty-barrier approach (§ 2)
for solving (2.1). Let z = (x, y) and t be fixed. Practically, t may depend on
z (in each step). Then, to obtain locally superlinear convergence, it suffices
to ensure that

‖t‖ = o(F (z)),

c.f. (3.10) and take into account that also F (the original function) has
been changed. We abbreviate Df = Df(x), Dgi = Dgj(x) and F = F (x, y).
Given r ∈ RT (y) (§2) we put

bi = 1− ri + tiri ∀i
in accordance with the ”derivative” of y−i +tiy

+
i . We define index sets I+, I−

and I0 depending on the signs of yi. Below, D2
xL(z) will stand for DxF1(z),

so L = f + 〈y+, g〉 does not depend on yi ≤ 0 (in contrast to the next
Case 4). Finally, put

J = {i/bi 6= 0}, K = {k/bk = 0}.
If yi < 0 then we have ri = 0; hence bi = 1, i ∈ J , and our weights wi below
are zero. We show:

A Newton step (5.1) means to find a KKT-point (u, µ) of the problem

min
u

(Df +
∑

k∈K

ykDgk)u +
1
2
uT D2

xLu +
1
2

∑

i∈J

wi(gi + Dgiu)2(5.2)
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s.t. gk + Dgku = 0 ∀k ∈ K, where wi = rib
−1
i and L = f + 〈y+, g〉.

The vector v in (5.1) is then given by vk = µk(1 − tk)(k ∈ K) and vi =
b−1
i (gi + Dgiu− (y−i + tiy

+
i ))(i ∈ J).

Proof. The linearized equations F t
2i = 0 require (equivalently), by the

product rule (2.5),

gi + Dgiu− bivi = y−i + tiy
+
i ,

i.e. vi = b−1
i [gi + Dgiu− (y−i + tiy

+
i )](i ∈ J) and gk + Dgku = 0(k ∈ K).

Substituting vJ in the linearized equation F1 = 0, i.e. in

F1 + D2
xLu +

∑

k∈K

rkvkDgk +
∑

i∈J

riviDgi = 0

and setting µk = rkvk = (1− tk)−1vk yields

0 = F1 + D2
xLu +

∑

k∈K

rkvkDgk +
∑

i∈J

wi[gi + Dgiu− [y−i + tiy
+
i )]Dgi

= D2
xLu + Df +

∑

k∈K

(y+
k + µk)Dgk

+
∑

i∈J

(y+
i + wi[gi + Dgiu− (y−i + tiy

+
i )])Dgi

= D2
xLu + Df +

∑

k∈K

(y+
k + µk)Dgk

+
∑

i∈J

((1− witi)y+
i − wiy

−
i + wi[gi + Dgiu])Dgi.

For i ∈ J , we have
(1− witi)y+

i − wiy
−
i = 0.

Indeed, if yi < 0, we know that y+
i = 0 and wi = 0; if yi > 0, we have

ri = 1, wi = b−1
i and bi = ti.

So the F1-Newton equation becomes

0 = D2
xLu + Df +

∑

k∈K

ykDgk +
∑

i∈J

wi(gi + Dgiu)Dgi +
∑

k∈K

µkDgk

and has the form
0 = DuQ(u, r) +

∑

k∈K

µkDgk,

where Q = (Df +
∑

k∈K ykDgk)u+ 1
2uT D2

xLu+ 1
2

∑
i∈J wi(gi +Dgiu)2. This

proves the assertion
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Having ti 6= 0 ∀i, the case of K = ∅ can be forced by setting ri = 1 whenever
yi ≥ 0. Now, the equality constraints disappear.

Let ti > 0. Then, if yi > 0, the weights wi = t−1
i are just the penalty

factors. For yi = 0 and ti = 0, all ri ∈ [0,1] are allowed. So wi may attain
all non-negative values.

Let ti < 0. If yi > 0, now wi = t−1
i is negative, and stationary u are not

necessarily minimizer of problem (5.2). If yi = 0, it holds 0 ≥ wi ≥ t−1
i .

Case 4. Application of NCP functions. To solve the KKT-system of
the C2-problem (2.1) via G ∈ pNCP , require the usual Lagrange condition
(with L = f + 〈 · , g〉)

Φ1(x, y) := DxL(x, y) := Df(x) +
∑

i

yiDgi(x) = 0

and write the remaining conditions as

Φ2i(x, y) := G(−gi(x), yi) = 0.

Using D0G and (4.13) we have to solve

DxL(x, y) + D2
xL(x, y)u +

∑

i

viDgi(x) = 0,(5.3)

−ai(gi(x) + Dgi(x)u) + bi(yi + vi) = 0,(5.4)

with
(ai, bi) ∈ D0G(−gi(x), yi).

Let
J = {i/bi 6= 0},K = {k/bk = 0}.

Now, the Newton equation means again (5.2), only ai and ri for i ∈ J must
be identified.

A Newton step means to find a KKT-Point (u, µ) of problem (5.2)

min
u

(Df +
∑

k∈K

ykDgk)u +
1
2
uT D2

xLu +
1
2

∑

i∈J

wi(gi + Dgiu)2

s.t. gk + Dgku = 0 ∀k ∈ K,

where wi = aib
−1
i ≥ 0 and L = f + 〈y, g〉. The vector v in (5.3), (5.4) is

then given by

vk = µk (k ∈ K) and vi + wi(gi + Dgiu) (i ∈ J)
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Remark. In the current case, we have y∗ ≥ 0, and non-zero coefficients
wi = aib

−1
i (i ∈ J, yi ≥ 0) coincide with wi = ri(1 − ri + tiri)−1 of Case 3

after setting ti = bia
−1
i and ri = 1.

Proof. Since (ai, bi) 6= 0, (5.4) yields

gk + Dgku = 0 (k ∈ K)
vi = −yi + wi(gi + Dgiu) (i ∈ J).

Raplacing vJ in (5.3) we obtain

0 = D2
xLu + DxL +

∑

k∈K

vkDgk +
∑

i∈J

[−yi + wi(gi + Dgiu)]Dgi

= D2
xLu + Df(x) +

∑

k∈K

(yk + vk)Dgk +
∑

i∈J

wi(gi + Dgiu)Dgi.

So the equivalence follows by the same arguments as in Case 3.

For k ∈ K, now yk < 0 is possible. Further, z → z∗ yields wi → ∞ if
y∗i > 0, and wi ↓ 0 if gi(x∗) < 0. So, the method realizes basically a penalty
approach.

Case 5. Perturbed generalized Jacobians. Let the Newton step be given
by

F (z) + J(r, t)(u, v)T = 0, J(r, t) ∈ δF t(z).(5.5)

where F t belongs again to the perturbed equation (2.8), ti ∈ R. We are
using an approximation (3.10) of the Newton map M = δF (z) which is
justified as long as

‖t‖ ≤ ‖F (z)‖.
Compared with case 3, now the terms tiy

+
i do not appear, and the above

proof leads us via

(1− witi)y+
i − wiy

−
i = y+

i − wiy
−
i = y+

i

directly to the modified objective

(Df +
∑

i∈K∪J

y+
i Dgi)u +

1
2
uT D2

xLu +
1
2

∑

i∈J

wi(gi + Dgiu)2.

All the other conclusions of case 3 remain true after setting tiy
+
i = 0, i.e.

r ∈ RT (y), bi = 1− ri + tiri ∀i J = {i/bi 6= 0}, K = {k/bk = 0}.
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A Newton step (5.5) means to find a KKT-point (u, µ) of the problem

minu DxLu +
1
2
uT D2

xLu +
1
2

∑

i∈J

wi(gi + Dgiu)2

s.t. gk + Dgku = 0 ∀k ∈ K,

(5.6)

where wi = rib
−1
i and L = f + 〈y+, g〉. The vector v in (5.5) is then given

by

vk = µ(1− tk) (k ∈ K) and vi = b−1
i (gi + Dgiu− y−i ) (i ∈ J)

In comparison with (5.2) now the derivative of the full Lagrangean appears
in the objective. Setting particularly ti 6= 0∀i and selecting r ∈ RT (y) with
ri = 1 if yi ≥ 0, we obtain:

A Newton step (5.5) means to find a stationary point u of

DxLu +
1
2
uT D2

xLu +
1
2

∑

i∈J

t−1
i (gi + Dgiu)2(5.7)

and to put vi = t−1
i (gi + Dgiu− y−i ) (i ∈ J).

Case 6. For completeness, we mention a case outside the scope of this
paper. To solve auxiliary problems of Wilson-type

minDxLu +
1
2
uT D2

xLu s.t. g(x) + Dg(x)u ≤ 0

one has to apply Newton’s method by using directional (or contingent-)
derivatives of F :

F (x, y) + CF (x, y)(u, v) = 0.

The solutions (u, v) fulfil the same condition as in case 3 since CF ⊂ TF .
The structure of Rc (§2) implies additionally that ri ∈ {0, 1} and µk =
rkvk ≥ 0. So the constraints may be written as inequalities. The existence
of a solution (u, v) is again ensured under strong regularity, because CF (x, y)
turns out to be surjective. Concerning this fact as well as convergence and
regularity conditions in detail we refer to [21].
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