A VIABILITY RESULT FOR NONCONVEX SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS

Vasile Lupulescu

"Constantin Brâncuşi" University Department of Mathematics Târgu-Jiu, 210152, Romania

e-mail: vasile@utgjiu.ro

AND

MIHAI NECULA

"Al. I. Cuza" University of Iași Faculty of Mathematics Iași, 700506, Romania

e-mail: necula@uaic.ro

Abstract

We establish some sufficient conditions in order that a given locally closed subset of a separable Banach space be a viable domain for a semilinear functional differential inclusion, using a tangency condition involving a semigroup generated by a linear operator.

Keywords: viability, invariance, tangency condition, semilinear differential inclusions.

2000 Mathematics Subject Classification: Primary 34A60, 49K25; Secondary 34A12, 49J27.

1. Introduction

We shall denote by X a separable Banach space and by $\mathcal{C}_{\sigma} := C([-\sigma, 0], X)$, with $\sigma > 0$, the Banach space of continuous functions from $[-\sigma, 0]$ into X, endowed with the norm $\|\varphi\|_{\sigma} := \sup\{\|\varphi(s)\|; s \in [-\sigma, 0]\}$. For any function $u : [\tau - \sigma, T] \to X$ and any $t \in [\tau, T]$ we shall denote by u_t the function defined as follows:

$$u_t : [-\sigma, 0] \to X, \ u_t(s) = u(t+s),$$

for every $s \in [-\sigma, 0]$. Clearly, if u is continuous, then $u_t \in \mathcal{C}_{\sigma}$ for every $t \in [\tau, T]$.

Let K be a given locally closed subset in X and let \mathcal{K}_0 be the following subset of \mathcal{C}_{σ} :

$$\mathfrak{K}_0 := \{ \varphi \in \mathfrak{C}_{\sigma}; \varphi(0) \in K \}.$$

We recall that a subset $K \subset X$ is locally closed if for each $\xi \in K$ there exists r > 0 such that $K \cap B(\xi, r)$ is closed in X, where, as usual, $B(\xi, r)$ denotes the closed ball with center ξ and radius r.

We consider the following functional differential inclusion

(1.1)
$$u'(t) \in Au(t) + F(t, u_t), t \in [a, b),$$

where $F:[a,b)\times \mathcal{C}_{\sigma}\to 2^X$ is a multifunction with nonempty and closed values and $A:D(A)\subset X\to X$ is the infinitesimal generator of the C_0 -semigroup $S(t):X\to X,\ t\geq 0$, and we are interested in finding sufficient conditions in order that K be a viable domain for (1.1), i.e. for each $(\tau,\varphi)\in [a,b)\times \mathcal{K}_0$ there exists at least one solution $u:[\tau-\sigma,T]\to K$ of (1.1) satisfying the initial condition

$$(1.2) u_{\tau} = \varphi.$$

By a solution to the problem (1.1) and (1.2) we mean a continuous function $u: [\tau - \sigma, T] \to X$ for which there exists $f \in L^1([\tau, T], X)$ with $f(t) \in F(t, u_t)$ a.e. on $[\tau, T]$ and such that

(1.3)
$$u(t) = \begin{cases} \varphi(t-\tau) \text{ for } t \in [\tau-\sigma,\tau), \\ S(t-\tau)\varphi(0) + \int_{\tau}^{t} S(t-s)f(s)ds \text{ for } t \in [\tau,T]. \end{cases}$$

The existence of solutions for functional differential equations governed or not by linear and nonlinear operators in Banach spaces has been studied extensively in many papers (see, for example, [4, 9, 10, 15, 22, 23, 26, 28]).

The first viability results for (1.1) in the case A=0 and F single valued have been proved in the papers [20] and [19]. The case when A=0, X is a finite dimensional space and F is upper semicontinuous and with convex compact values has been studied by Haddad ([13, 14]). Haddad's result has been extended by Syam [25] and Gavioli and Malaguti [11] to the infinite dimensional setting. For results, references and applications in this framework we refer to the monographs: [1, 8, 12, 17, 18] and [24]. The case when A is the infinitesimal generator of C_0 -semigroup and F is a continuous single-valued function has been studied by Iacob and Pavel [16].

There are many methods and techniques in the viability theory, but, generally speaking, the viability criteria fall into two classes: those in which the conditions are given in terms of a classical tangent cone (or Bouligand or Dini or contingent cone) and those in which a proximal normal cone is used. We shall use a tangency condition of the same kind as in [16], accordingly adapted. Also, the construction method for a sequence of approximate solutions to (1.1), defined on an apriori given interval, is closed to the one used by Cârjă and Vrabie [7] and the convergence method is the same that we have used [21].

2. Preliminaries and the main result

We assume that the reader is familiar with the basic concepts and results concerning C_0 -semigroups, we refer to Vrabie [27] for details.

Let the Banach space X be endowed, with the σ -field $\mathcal{B}(X)$ of Borel subsets and let $\mathcal{I} = [a,b)$ be endowed with the Lebesgue measure and the σ -field $\mathcal{L}(\mathcal{I})$ of Lebesgue measurable subsets.

For nonempty subsets A, B of X and $a \in A$, we denote

$$d(a, B) = \inf\{||a - b||; b \in B\}, \quad d(A, B) = \sup\{d(a, B); a \in A\},\$$

and by

$$d_{HP}(A,B) = \max\{d(A,B), d(B,A)\}$$

we denote the Hausdorff-Pompeiu distance between A and B.

Let us introduce the following hypotheses which we shall use throughout this paper.

- (H_0) X is a separable Banach space, $A:D(A)\subset X\to X$ is the infinitesimal generator of the C_0 -semigroup $\{S(t);t\geq 0\}$, K is a locally closed subset in X and $F: \mathcal{I}\times\mathcal{K}_0\to 2^X$ is a multifunction with nonempty and closed values;
- (H₁) For each $(\tau, \varphi) \in \mathcal{I} \times \mathcal{K}_0$ there exist $\rho > 0$, r > 0 and an integrable function $\chi \in L^1([\tau, \tau + \rho], \mathbb{R}_+)$ such that

(2.1)
$$\sup\{|F(t,\psi)|; \psi \in \mathcal{K}_0 \times B_{\sigma}(\varphi,r)\} \le \chi(t)$$

a.e on $[\tau, \tau + \rho]$, where $|F(t, \varphi)| := \sup\{||y||; y \in F(t, \psi)\}$ and

$$B_{\sigma}(\varphi, r) := \{ \psi \in \mathfrak{C}_{\sigma}; \| \psi - \varphi \|_{\sigma} \le r \};$$

(H₂) For each $(\tau, \varphi) \in \mathcal{I} \times \mathcal{K}_0$ there exist $\rho > 0$, r > 0, $\mu \in L^1([\tau, \tau + \rho], \mathbb{R}_+)$ and a negligible subset $\mathcal{Z} \subset [\tau, \tau + \rho]$ such that

(2.2)
$$d_{HP}(F(t,\varphi_1), F(t,\varphi_2)) \le \mu(t) \|\varphi_1 - \varphi_2\|_{\sigma}$$

for every $t \in [\tau, \tau + \rho] \setminus \mathcal{Z}$ and every $\varphi_1, \varphi_2 \in \mathcal{K}_0 \times B_{\sigma}(\varphi, r)$;

- (H₃) For each $\varphi \in \mathcal{K}_0$ the multifunction $F(\cdot, \varphi) : \mathcal{I} \to 2^X$ is measurable;
- (H_4) For every $(\tau, \varphi) \in \mathcal{I} \times \mathcal{K}_0$ the following tangential condition holds:

$$\liminf_{h\downarrow 0} \frac{1}{h} d(S(h)\varphi(0) + \int_{\tau}^{\tau+h} S(\tau+h-s)F(s,\varphi)ds, K) = 0.$$

Here the integral is in the sense of Aumann [2].

We are now ready to state the main result of this paper.

Theorem 2.1. If the assumptions (H_0) – (H_4) are satisfied, then K is a viable domain for (1.1).

In order to prove our theorem we need the following technical result, concerning a measurable multifunction in Banach spaces, established by Q.I. Zhu [29].

Theorem 2.2. Let X be a separable Banach space, $\psi : [a,b) \to X$ a measurable function and $G(\cdot) : [a,b) \to 2^X$ a measurable multifunction with nonempty and closed values. Then for any positive measurable function $\nu : [a,b) \to \mathbb{R}_+$ there exists a measurable selection $g(\cdot) \in G(\cdot)$ such that

$$||g(t) - \psi(t)|| \le d(\psi(t), G(t)) + \nu(t)$$

a.e. on [a,b).

In what follows, we recall a general principle on ordered sets due to Brézis and Browder [3]. It will be used in the next section in order to obtain some "maximal" elements in an ordered set.

Theorem 2.3. Let \leq be a given preorder on the nonempty set M and let $S: M \to \mathbb{R} \cup \{+\infty\}$ be an increasing function. Suppose that each increasing sequence in M is majorated in M. Then, for each $\xi_0 \in M$, there exists $\overline{\xi} \in M$ with $\xi_0 \leq \overline{\xi}$ such that $\overline{\xi} \leq \xi$ implies $S(\overline{\xi}) = S(\xi)$.

In the paper by Brézis and Browder [3], the function S is supposed to be finite and bounded from above, but, as remarked in [6], this restriction can be removed by replacing the function S by $\xi \to \arctan S(\xi)$.

Finally, let u be a function defined on the interval \mathcal{J} of \mathbb{R} with values into X. For some $\delta > 0$, we denote by $\omega(u, \mathcal{J}_0, \delta)$ the modulus of continuity of u on the subinterval $\mathcal{J}_0 \subset \mathcal{J}$, defined by

$$\omega(u, \mathcal{J}_0, \delta) = \sup\{\|u(t) - u(s)\|; t, s \in \mathcal{J}_0, |t - s| \le \delta\}.$$

It is easy to see that $\omega(u,\cdot,\delta)$ and $\omega(u,\mathcal{J}_0,\cdot)$ are increasing functions and that u is uniformly continuous on \mathcal{J}_0 if and only if $\lim_{\delta\downarrow 0} \omega(u,\mathcal{J}_0,\delta) = 0$.

3. Proof of the main result

We shall show that the tangential condition (H_4) along with Brézis-Browder Ordering Principle, i.e. Theorem 2.3 above, imply that for each initial point $(\tau, \varphi) \in \mathcal{I} \times \mathcal{K}_0$, there exist $T \in (\tau, b)$ and one sequence $u^n : [\tau - \sigma, T] \to X$ of "approximate solutions" of (1.1) such that $(u^n)_n$ converges uniformly to a solution $u : [\tau - \sigma, T] \to K$ of (1.1) satisfying (1.2).

We assume that the hypotheses (H_0) – (H_4) are satisfied and we begin by fixing an arbitrary initial data $(\tau, \varphi) \in \Im \times \mathcal{K}_0$. Since the hypotheses (H_1) and (H_2) have a locall character and K is locally closed we can choose r > 0, $\rho \in (0, b - \tau)$, χ and μ in $L^1([\tau, \tau + \rho], \mathbb{R}_+)$ such that $K \cap B(\varphi(0), r)$ is closed in X and the relations (2.1) and (2.2) are satisfied on $[\tau, \tau + \rho] \times B_{\sigma}(\varphi, r)$. We emphasize that this choice of r, ρ, χ and μ will be kept unmodified until the end of this proof.

Remark 3.1. The following statements hold:

- (i) If $\alpha \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ then $\alpha(0) \in K \cap B(\varphi(0), r)$,
- (ii) If $K \cap B(\varphi(0), r)$ is closed in X then $\mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ is closed in C_{σ} .

Indeed, the first statement is obvious. For the second, let us assume that $K \cap B(\varphi(0), r)$ is closed and let us consider a sequence $(\alpha_n)_n$ in $\mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ that is convergent (in the norm $\|\cdot\|_{\sigma}$) to $\alpha \in \mathcal{C}_{\sigma}$. It readily follows that $\alpha \in B_{\sigma}(\varphi, r)$, $\alpha_n(0) \to \alpha(0)$ and $\alpha_n(0) \in K \cap B(\varphi(0), r)$, therefore, since $K \cap B(\varphi(0), r)$ is closed, we obtain that $\alpha(0) \in K$ and thus $\alpha \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$.

Since $\{S(t); t \geq 0\}$ is a C_0 -semigroup, there exist $M_0 \geq 1$ and $\omega_0 \geq 0$ such that $||S(t)\xi|| \leq M_0 e^{\omega_0 t} ||\xi||$ for every $t \geq 0$ and for every $\xi \in X$. We define

$$(3.1) M = M_0 e^{\omega_0 \rho}$$

and we have $||S(t-\tau)\xi|| \le M||\xi||$ for every $t \in [\tau, \tau + \rho]$ and every $\xi \in X$. We shall define the "approximate solution" concept.

Definition 3.1. Let $\varepsilon \in (0,1)$, $\nu \in (\tau, \tau + \rho]$ and $\psi \in L^1([\tau, \tau + \rho], X)$ be arbitrarily fixed.

We shall denote by (θ, β, g, f, u) a 5-tuple composed of the measurable functions $\theta: [\tau, \nu] \to [\tau, \nu], \ \beta: \Delta_{\nu} = \{(t, s); \tau \leq s < t \leq \nu\} \to [0, \nu - \tau], g \in L^{\infty}([\tau, \nu], X), f \in L^{1}([\tau, \nu], X) \text{ and by the function } u: [\tau - \sigma, \nu] \to X \text{ defined by}$

$$u(t) = \begin{cases} \varphi(t-\tau) \text{ for } t \in [\tau-\sigma,\tau), \\ S(t-\tau)\varphi(0) + \int_{\tau}^{t} S(t-s)f(s)ds + \int_{\tau}^{t} S(\beta(t,s))g(s)ds, \ t \in [\tau,\nu]. \end{cases}$$

The 5-tuple (θ, β, g, f, u) will de called an (ε, ψ) -approximate solution of (1.1) and (1.2) on $[\tau - \sigma, \nu]$ if the following conditions are satisfied:

- (A_1) $u_{\theta(t)} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ for every $t \in [\tau, \nu)$;
- (A_2) $0 \le t \theta(t)$ for every $t \in [\tau, \nu]$;
- (A₃) $\beta(t,s) \leq t \tau$ for $\tau \leq s < t \leq \nu$ and $t \to \beta(t,s)$ is nonexpansive on $(s,\nu]$;
- $(A_4) \|g(t)\| \leq \varepsilon \text{ a.e. on } [\tau, \nu];$
- (A₅) $f(t) \in F(t, u_{\theta(t)})$ a.e. on $[\tau, \nu]$;
- $(A_6) \|f(t) \psi(t)\| \le d(\psi(t), F(t, u_{\theta(t)})) + \varepsilon \mu(t) \text{ a.e. on } [\tau, \nu];$
- $(A_7) \|u_t u_{\theta(t)}\|_{\sigma} \leq \varepsilon \text{ for every } t \in [\tau, \nu];$
- (A_8) $u_{\nu} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r).$

Remark 3.2. We emphasize that although the function u is uniquely determined by β , g and f, for the sake of simplicity, we preferred to consider it as a component of (θ, β, g, f, u) .

Remark 3.3. Let $\nu \in (\tau, \tau + \rho]$, $\beta : \Delta_{\nu} \to [0, \nu - \tau]$, $g \in L^{\infty}([\tau, \nu], X)$, $f \in L^{1}([\tau, \nu], X)$ be given and $u : [\tau - \sigma, \nu] \to X$ be defined by (3.2). If β satisfies (A_{3}) then, using Lebesgue's Theorem, we deduce that the function u is continuous on the whole interval $[\tau - \sigma, \nu]$ and so $u_{t} \in C_{\sigma}$, for every $t \in [\tau, \nu]$.

In the sequel we define the operator solution to the problem (1.1) and (1.2), $Qf: L^1([\tau, \nu], X) \to C([\tau - \sigma, \nu], X)$, by

(3.3)
$$(Qf)(t) = \begin{cases} \varphi(t-\tau) \text{ for } t \in [\tau-\sigma,\tau), \\ S(t-\tau)\varphi(0) + \int_{\tau}^{t} S(t-s)f(s)ds \text{ for } t \in [\tau,\nu]. \end{cases}$$

We notice that u is a solution of (1.1) and (1.2) on $[\tau - \sigma, T]$ if there exists $f \in L^1([\tau, T], X)$ such that u = Qf and $f(t) \in F(t, u_t)$ a.e. on $[\tau, T]$.

Remark 3.4. Let $\nu \in (\tau, \tau + \rho]$, $\beta : \Delta_{\nu} \to [0, \nu - \tau]$, $g \in L^{\infty}([\tau, \nu], X)$, $f \in L^{1}([\tau, \nu], X)$ be given and $u : [\tau - \sigma, \nu] \to X$ be defined by (3.2). If $||f(t)|| \le \chi(t)$ and $||g(t)|| \le 1$ a.e. on $[\tau, \nu]$, then we have

(3.4)
$$||u_{\nu} - u_{\tau}||_{\sigma} \leq \omega(\varphi, [-\sigma, 0], \nu - \tau) + M \sup_{0 \leq h \leq \nu - \tau} ||S(h)\varphi(0) - \varphi(0)||$$

$$+ 2M \int_{\tau}^{\nu} \chi(s)ds + 2M(\nu - \tau).$$

Indeed, for every $t, s \in [\tau, \nu]$ we have

$$||u_{t} - u_{s}||_{\sigma} = \sup_{\alpha \in [-\sigma, 0]} ||u_{t}(\alpha) - u_{s}(\alpha)||$$

$$= \sup_{\alpha \in [-\sigma, 0]} ||u(t + \alpha) - u(s + \alpha)|| \le \omega(u, [\tau - \sigma, \nu], |t - s|)$$

$$\le \omega(u, [\tau - \sigma, \tau], |t - s|) + \omega(u, [\tau, \nu], |t - s|).$$

Since $u_{\tau} = \varphi$ we get $\omega(u, [\tau - \sigma, \tau], |t - s|) = \omega(\varphi, [-\sigma, 0], |t - s|)$ and so $||u_t - u_s||_{\sigma} \le \omega(\varphi, [-\sigma, 0], |t - s|) + \omega(u, [\tau, \nu], |t - s|).$

From the definition of u on $[\tau, \nu]$ we obtain

$$\omega(u, [\tau, \nu], \delta) \le \omega(Qf, [\tau, \nu], \delta) + 2M(\nu - \tau) \|g\|_{\infty}$$

and therefore we have

$$(3.5) \|u_t - u_s\|_{\sigma} \le \omega(\varphi, [-\sigma, 0], |t - s|) + \omega(Qf, [\tau, \nu], |t - s|) + 2M(\nu - \tau) \|g\|_{\infty},$$

for every $t, s \in [\tau, \nu]$. Consequently, using the estimate

$$\omega(Qf, [\tau, \nu], \delta) \le M \sup_{0 \le h \le \delta} ||S(h)\varphi(0) - \varphi(0)|| + 2M \int_{\tau}^{\nu} \chi(s) ds,$$

we get (3.4).

Remark 3.5. Let us consider $\overline{f} \in L^1([\tau, \overline{\nu}], X)$, $\nu \in (\tau, \overline{\nu})$ and $f = \overline{f}|_{[\tau, \nu]}$. Since (Qf)(t) depends only on the values of f on the interval $[\tau, \nu]$, we deduce that $Qf = (Q\overline{f})|_{[\tau, \nu]}$ and therefore

$$\omega(Qf, [\tau, \nu], \delta) = \omega(Q\overline{f}, [\tau, \nu], \delta) \le \omega(Q\overline{f}, [\tau, \overline{\nu}], \delta), \text{ for every } \delta \ge 0.$$

In the next lemma we show how to choose $T \in (\tau, \tau + \rho]$ and how to construct, for every $\varepsilon \in (0,1)$ and every $\psi \in L^{\infty}([\tau, \tau + \rho], X)$, an (ε, ψ) -approximate solution on $[\tau - \sigma, T]$.

Lemma 3.1. Assume that the hypotheses (H_0) – (H_4) are satisfied. Then there exists $T \in (\tau, \tau + \rho]$ with $\int_{\tau}^{T} \mu(s) ds \leq 1/2$ such that for every $\varepsilon \in (0, 1)$ and every $\psi \in L^{\infty}([\tau, \tau + \rho], X)$ the problem (1.1) and (1.2) have at least one (ε, ψ) -approximate solution on $[\tau - \sigma, T]$.

Proof. We fix $T \in (\tau, \tau + \rho]$ such that

(3.6)
$$\omega(\varphi, [-\sigma, 0], T - \tau) + M \sup_{0 \le h \le T - \tau} ||S(h)\varphi(0) - \varphi(0)|| + 2M \int_{\tau}^{T} \chi(s)ds + 2M(T - \tau) \le r$$

and

(3.7)
$$\int_{\tau}^{T} \mu(s)ds \le 1/2.$$

We denote by \mathcal{M}_T the set of all (ε, ψ) -approximate solutions (θ, β, g, f, u) on $[\tau - \sigma, \nu] \subset [\tau - \sigma, T]$ and we begin by proving that \mathcal{M}_T is a nonempty set. Applying Theorem 2.2 to $G(\cdot) = F(\cdot, \varphi)$ on $[\tau, T]$ we obtain that there exists a measurable selection $\overline{f}: [\tau, T] \to X$ such that $\overline{f}(t) \in F(t, \varphi)$ a.e. on $[\tau, T]$ and

$$\|\bar{f}(t) - \psi(t)\| \leq d(\psi(t), F(t, \varphi)) + \varepsilon \mu(t) \text{ a.e. on } [\tau, T].$$

Moreover, from (H_1) we obtain that $\|\overline{f}(t)\| \leq \chi(t)$ a.e. on $[\tau, T]$ and therefore $\overline{f} \in L^1([\tau, T], X)$. Using the tangential condition (H_4) for $(\tau, \varphi) \in \mathcal{I} \times \mathcal{K}_0$ we obtain that there exist $(h_n)_n$ in \mathbb{R}_+ with $h_n \downarrow 0$ and $(q_n)_n$ in X with $q_n \to 0$ such that

$$(3.8) S(h_n)\varphi(0) + \int_{\tau}^{\tau + h_n} S(\tau + h_n - s)\bar{f}(s)ds + h_n q_n \in K,$$

for every $n \in \mathbb{N}$. We can fix $n_0 \in \mathbb{N}$ such that $h_{n_0} \in (0, T - \tau]$ and $||q_{n_0}|| \leq \varepsilon$. This choice is possible because

$$\lim_{\delta\downarrow 0}\omega(\varphi,[-\sigma,0],\delta)=0 \text{ and } \lim_{\delta\downarrow 0}\omega(Q\bar{f},[\tau,T],\delta)=0.$$

For n_0 fixed as above, we define: $\nu_0 := \tau + h_{n_0}$, $\theta(t) := \tau$ for every $t \in [\tau, \nu_0]$, $\beta(t,s) = 0$ for every $(t,s) \in \Delta_{\nu_0}$, $g(t) := q_{n_0}$ and $f(t) := \bar{f}(t)$ a.e. on $[\tau, \nu_0]$ and we show that (θ, β, g, f, u) , with u defined by (3.2), is an (ε, ψ) -approximate solution on $[\tau - \sigma, \nu_0] \subset [\tau - \sigma, T]$.

It is easy to see that the conditions (A_1) – (A_6) are fulfilled.

Let us verify the conditions (A_7) and (A_8) . Using (3.5), Remark 3.5 and our choice for h_{n_0} , we obtain that

$$||u_{t} - u_{\theta(t)}||_{\sigma} = ||u_{t} - u_{\tau}||_{\sigma} \leq \omega(\varphi, [-\sigma, 0], t - \tau)$$

$$+ \omega(Qf, [\tau, \nu_{0}], t - \tau) + 2M(\nu_{0} - \tau)||g||_{\sigma} \leq \omega(\varphi, [-\sigma, 0], h_{n_{0}})$$

$$+ \omega(Q\overline{f}, [\tau, T], h_{n_{0}}) + 2M(T - \tau)||g||_{\sigma} \leq \varepsilon$$

for every $t \in [\tau, \nu_0)$ and so (A_7) is fulfilled. Furthermore, from (A_1) , (A_4) and (A_5) we get $||f(t)|| \leq \chi(t)$ and $||g(t)|| \leq \varepsilon \leq 1$ a.e. on $[\tau, \nu_0]$ and therefore, using (3.4) and (3.6), we have

$$||u_{\nu_0} - \varphi||_{\sigma} = ||u_{\nu_0} - u_{\tau}||_{\sigma} \le r,$$

hence $u_{\nu_0} \in B_{\sigma}(\varphi, r)$. Since by (3.3) and (3.8) we have

$$u_{\nu_0}(0) = u(\nu_0) = S(h_{n_0})\varphi(0) + \int_{\tau}^{\tau + h_{n_0}} S(\tau + h_{n_0} - s)\bar{f}(s)ds + h_{n_0}q_{n_0} \in K,$$

it follows that $u_{\nu_0} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$. Hence (A_8) is also satisfied and consequently $(\theta, \beta, g, f, u) \in \mathcal{M}_T$.

Next, we shall prove that there exists at least one (ε, ψ) -approximate solution of (1.1) and (1.2), defined on the whole interval $[\tau - \sigma, T]$. To this end, we shall apply Theorem 2.3 to the set \mathcal{M}_T endowed with the following preorder:

If $(\theta^1, \beta^1, g^1, f^1, u^1)$ and $(\theta^2, \beta^2, g^2, f^2, u^2)$ are two (ε, ψ) -approximate solution on $[\tau - \sigma, \nu^1]$ and respectively on $[\tau - \sigma, \nu^2]$, then we say that

$$\left(\theta^1,\beta^1,g^1,f^1,u^1\right) \preccurlyeq \left(\theta^2,\beta^2,g^2,f^2,u^2\right)$$

if only if $\nu^1 \leq \nu^2$, $\theta^1 = \theta^2|_{[\tau,\nu^1]}$, $\beta^1 = \beta^2|_{[\tau,\nu^1]}$, $g^1 = g^2|_{[\tau,\nu^1]}$, and $f^1 = f^2|_{[\tau,\nu^1]}$.

It is obvious that \leq is a preorder on \mathcal{M}_T . Moreover, let us notice that $(\theta^1, \beta^1, g^1, f^1, u^1) \leq (\theta^2, \beta^2, g^2, f^2, u^2)$ implies, by (3.2), that $u^2|_{[\tau - \sigma, \nu_1]} = u^1$. We define the function $S: \mathcal{M}_T \to \mathbb{R}$ by

$$S((\theta, \beta, q, f, u)) = \nu,$$

if (θ, β, g, f, u) is an (ε, ψ) -approximate solution defined on $[\tau - \sigma, \nu]$. It is clear that S is increasing on \mathcal{M}_T . Further on, we shall show that each increasing sequence $((\theta^i, \beta^i, g^i, f^i, u^i))_{i \in \mathbb{N}}$ in \mathcal{M}_T is majorated in \mathcal{M}_T . We construct a majorant as follows. We define

$$\nu^* = \lim_i \nu^i$$

and we have $\nu^* \in (\tau, T]$. For each $i \in \mathbb{N}$, we define $\theta^*(t) = \theta^i(t)$ if $t \in [\tau, \nu^i]$ and $\theta^*(\nu^*) = \nu^*$, $\beta^*(t,s) = \beta^i(t,s)$ for every $(t,s) \in \Delta_{\nu^i}$, $g^*(t) = g^i(t)$ and $f^*(t) = f^i(t)$ if $t \in [\tau, \nu^i]$. Since $((\theta^i, \beta^i, g^i, f^i, u^i))_{i \in \mathbb{N}}$ is an increasing sequence in \mathcal{M}_T , the functions θ^*, β^*, g^* , and f^* are well defined. Moreover, for every $i \in \mathbb{N}$ we have that $||f^i(t)|| \leq \chi(t)$ and $||g^i(t)|| \leq \varepsilon$ a.e. on $[\tau, \nu^i]$, which yields

(3.9)
$$||f^*(t)|| \le \chi(t) \text{ and } ||g^*(t)|| \le \varepsilon \text{ a.e. on } [\tau, \nu^i]$$

and therefore $g^* \in L^{\infty}([\tau, \nu^*], X)$ and $f^* \in L^1([\tau, \nu^*], X)$. It is obvious that $\theta^* : [\tau, \nu^*] \to [\tau, \nu^*]$ and thus we can consider the 5-tuple $(\theta^*, \beta^*, g^*, f^*, u^*)$ with the function u^* defined by (3.2) . Since $t \to \beta^*(t, s)$ is nonexpansive on (s, ν^*) , in view of Remark 3.3 we infer that u^* is continuous on $[t - \tau, \nu^*]$.

Now, we show that $(\theta^*, \beta^*, g^*, f^*, u^*) \in \mathcal{M}_T$. To this end, we fix an arbitrary $i \in \mathbb{N}$ and we observe that for every $t \in [\tau - \sigma, \tau]$ we have $u^*(t) = \varphi(t - \tau) = u^i(t)$ and for every $t \in [\tau, \nu^i]$ we have

$$u^{*}(t) = S(t - \tau)\varphi(0) + \int_{\tau}^{t} S(t - s)f^{*}(s)ds + \int_{\tau}^{t} S(\beta^{*}(t, s))g^{*}(s)ds$$
$$= S(t - \tau)\varphi(0) + \int_{\tau}^{t} S(t - s)f^{i}(s)ds + \int_{\tau}^{t} S(\beta^{i}(t, s))g^{i}(s)ds = u^{i}(t).$$

Consequently, $u^*(t) = u^i(t)$ for every $t \in [\tau - \sigma, \nu^i]$. Moreover, for every $t \in [\tau, \nu^i]$ and every $s \in [-\sigma, 0]$ we have

$$\tau - \sigma \le \theta^*(t) + s = \theta^i(t) + s \le t + s \le t \le \nu^i,$$

and

$$u^*_{\theta^*(t)}(s) = u^*(\theta^*(t) + s) = u^*(\theta^i(t) + s) = u^i(\theta^i(t) + s) = u^i_{\theta^i(t)}(s).$$

Therefore

$$(3.10) u_{\theta^*(t)}^* = u_{\theta^i(t)}^i,$$

for every $t \in [\tau, \nu^i]$. Taking into account the above relations, it readily follows that $(\theta^*, \beta^*, g^*, f^*, u^*)$ satisfies (A_2) – (A_7) .

Let us verify the conditions (A_1) and (A_8) . For any $t \in [\tau, \nu^*)$ there exists $i \in \mathbb{N}$ such that $t \in [\tau, \nu^i]$ so, by (3.10) we get $u^*_{\theta^*(t)} = u^i_{\theta^i(t)} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$. For $t = \nu^*$ we have $\theta^*(\nu^*) = \nu^*$ and $u^*_{\theta^*(\nu^*)} = u^*_{\nu^*}$. Then, by (3.9), we can use the relation (3.4) which, together with (3.6), yields $||u^*_{\nu^*} - \varphi||_{\sigma} \le r$ and thus $u^*_{\theta^*(\nu^*)} = u^*_{\nu^*} \in B_{\sigma}(\varphi, r)$. By the continuity of u^* we have

$$u_{\nu^*}^*(0) = u^*(\nu^*) = \lim_i u^*(\nu^i) = \lim_i u^i(\nu^i).$$

Since $u_{\nu^i}^i \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ we have that $u^i(\nu^i) = u_{\nu^i}^i(0) \in K \cap B(\varphi(0), r)$, for every $i \in \mathbb{N}$. The set $K \cap B(\varphi(0), r)$ is closed, hence $u_{\nu^*}^*(0) \in K \cap B(\varphi(0), r)$ and therefore $u_{\theta^*(\nu^*)}^* = u_{\nu^*}^* \in \mathcal{K}_0$. It follows that $(\theta^*, \beta^*, g^*, f^*, u^*) \in \mathcal{M}_T$. In addition, $(\theta^i, \beta^i, g^i, f^i, u^i) \preceq (\theta^*, \beta^*, g^*, f^*, u^*)$ for each $i \in \mathbb{N}$ and thus the sequence $((\theta^i, \beta^i, g^i, f^i, u^i))_{i \in \mathbb{N}}$ is majorated in \mathcal{M}_T . Therefore, the set \mathcal{M}_T , endowed with the preorder \preceq and the function S, satisfies the hypotheses of Theorem 2.3.

Before using the conclusion of Theorem 2.3, we shall show that any element $(\theta, \beta, g, f, u) \in \mathcal{M}_T$ with $\mathbb{S}((\theta, \beta, g, f, u)) < T$ is majorated in \mathcal{M}_T by an element $(\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}) \in \mathcal{M}_T$ with $\mathbb{S}((\theta, \beta, g, f, u)) < \mathbb{S}((\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}))$. To this aim let us consider that (θ, β, g, f, u) is an (ε, ψ) -approximate solution defined $[\tau - \sigma, \nu]$ with $\nu \in (\tau, T)$. Since $u_{\nu} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ we can apply Theorem 2.2 on $[\nu, T]$ for $G(\cdot) = F(\cdot, u_{\nu})$. It follows that there exists a measurable function $\overline{f}: [\nu, T] \to X$ such that $\overline{f}(t) \in F(t, u_{\nu})$ a.e. on $[\nu, T]$ and

$$\|\bar{f}(t) - \psi(t)\| \le d(\psi(t), F(t, u_{\nu})) + \varepsilon \mu(t)$$
 a.e. on $[\nu, T]$.

By (H_1) we have $\|\bar{f}(t)\| \leq \chi(t)$ a.e. on $[\nu, T]$ and hence $\bar{f} \in L^1([\nu, T], X)$. Since $(\nu, u_{\nu}) \in \mathcal{I} \times \mathcal{K}_0$ we can apply the tangency condition (H_4) at (ν, u_{ν}) . Therefore, there exist $(h_n)_n$ in \mathbb{R}_+ with $h_n \downarrow 0$ and $(q_n)_n$ in X with $q_n \to 0$ such that

(3.11)
$$S(h_{n_0})u_{\nu}(0) + \int_{\nu}^{\nu + h_n} S(\nu + h_n - s)\bar{f}(s)ds + h_n q_n \in K,$$

for every $n \in \mathbb{N}$.

We define

$$\hat{f}(t) := \begin{cases} f(t) & \text{if } t \in [\tau, \nu], \\ \bar{f}(t) & \text{if } t \in (\nu, T]. \end{cases}$$

Since

$$\lim_{\delta\downarrow 0}\omega(\varphi,[-\sigma,0],\delta)=0 \text{ and } \lim_{\delta\downarrow 0}\omega(Q\hat{f},[\tau,T],\delta)=0$$

we can fix $\widetilde{n} \in \mathbb{N}$ such that $h_{\widetilde{n}} \in (0, T - \nu], ||q_{\widetilde{n}}|| \leq \varepsilon$ and

$$\omega(\varphi, [-\sigma, 0], h_{\widetilde{n}}) + \omega(Q\widehat{f}, [\tau, T], h_{\widetilde{n}}) + 2M(T - \tau) \|q_{\widetilde{n}}\| \le \varepsilon.$$

Further on, we define $\widetilde{\nu} := \nu + h_{\widetilde{n}}$, $\widetilde{f}(t) := \widehat{f}(t)$ for $t \in [\tau, \widetilde{\nu}]$ and

$$\widetilde{\theta}(t) := \begin{cases} \theta(t) & \text{if } t \in [\tau, \nu], \\ \nu & \text{if } t \in (\nu, \widetilde{\nu}]; \end{cases}$$

$$\widetilde{g}(t) := \left\{ \begin{array}{ll} g(t) & \text{if } t \in [\tau, \nu] \\ q_{n_0} & \text{if } t \in (\nu, \widetilde{\nu}] \end{array} \right.$$

$$\widetilde{\beta}(t,s) := \begin{cases} \beta(t,s) & \text{if } \tau \leq s < t \leq \nu, \\ \tau - \nu + \beta(\nu,s) & \text{if } \tau \leq s < \nu < t \leq \widetilde{\nu}, \\ 0 & \text{if } \nu \leq s < t \leq \widetilde{\nu}. \end{cases}$$

We show that $(\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u})$, with \widetilde{u} given by (3.2), is an (ε, ψ) -approximate solution defined on $[\tau - \sigma, \widetilde{\nu}] \subset [\tau - \sigma, T]$. First, we notice that $\widetilde{\beta}$ satisfies (A_3) , $\widetilde{g} \in L^{\infty}([\tau, \widetilde{\nu}], X)$ and $\overline{f} \in L^1([\tau, \widetilde{\nu}], X)$ so, in view of Remark 3.3, it follows that $\widetilde{u} \in C([\tau - \sigma, \widetilde{\nu}], X)$. Moreover,

$$\widetilde{u}(t) = u(t)$$
 for every $t \in [\tau - \sigma, \nu]$

and

$$\tilde{u}(t) = S(t - \tau)\varphi(0) + \int_{\tau}^{t} S(t - s)\tilde{f}(s)ds + \int_{\tau}^{t} S(\widetilde{\beta}(t, s))\tilde{g}(s)ds$$

$$= S(t - \nu)\tilde{u}(\nu) + \int_{\nu}^{t} S(t - s)\tilde{f}(s)ds + \int_{\nu}^{t} S(\widetilde{\beta}(t, s))\tilde{g}(s)ds$$

$$= S(t - \nu)u_{\nu}(0) + \int_{\nu}^{t} S(t - s)\hat{f}(s)ds + (t - \nu)q_{\widetilde{n}},$$

for every $t \in [\nu, \tilde{\nu}]$. Also, it is obvious that $(\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u})$ satisfies (A_2) – (A_6) . Since for every $t \in [\tau, \nu]$ we have $\tilde{\theta}(t) = \theta(t)$ and

$$\tilde{u}_{\tilde{\theta}(t)} = \tilde{u}_{\theta(t)} = u_{\theta(t)} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$$

and for every $t \in (\nu, \tilde{\nu}]$ we have

$$\tilde{u}_{\tilde{\theta}(t)} = \tilde{u}_{\nu} = u_{\nu} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r),$$

we deduce that (A_1) is fulfilled.

Let us verify the conditions (A_7) and (A_8) . For every $t \in [\tau, \nu]$ we have

$$\|\tilde{u}_t - u_{\tilde{\theta}(t)}\|_{\sigma} = \|\tilde{u}_t - \tilde{u}_{\theta(t)}\|_{\sigma} = \|u_t - u_{\theta(t)}\|_{\sigma} \le \varepsilon$$

and for $t \in (\nu, \tilde{\nu}]$, using (3.5), Remark 3.5 and our choice of $h_{\tilde{n}}$, we obtain

$$\begin{split} &\|\widetilde{u}_t - \widetilde{u}_{\widetilde{\theta}(t)}\|_{\sigma} = \|\widetilde{u}_t - \widetilde{u}_{\nu}\|_{\sigma} \leq \omega(\varphi, [-\sigma, 0], t - \nu) \\ &+ \omega(Q\widetilde{f}, [\tau, \widetilde{\nu}], t - \nu) + 2M(\widetilde{\nu} - \tau)\|g\|_{\infty} \leq \omega(\varphi, [-\sigma, 0], h_{\widetilde{n}}) \\ &+ \omega(Q\widehat{f}, [\tau, T], h_{\widetilde{n}}) + 2M(T - \tau)\|q_{\widetilde{n}}\| \leq \varepsilon \end{split}$$

and so (A_7) is fulfilled.

By (A_1) , (A_4) and (A_5) we have that $||f(t)|| \le \chi(t)$ and $||g(t)|| \le \varepsilon \le 1$ a.e. on $[\tau, \tilde{\nu}]$ and therefore we can use (3.4) which, together with (3.6), yields

$$\|\tilde{u}_{\tilde{\nu}} - \varphi\|_{\sigma} = \|\tilde{u}_{\tilde{\nu}} - \tilde{u}_{\tau}\|_{\sigma} < r$$

and thus $\tilde{u}_{\tilde{\nu}} \in B_{\sigma}(\varphi, r)$. Since, by (3.2) and (3.11), we have

$$\tilde{u}_{\tilde{\nu}}(0) = S(h_{\tilde{n}})u_{\nu}(0) + \int_{\nu}^{\nu + h_{\tilde{n}}} S(\nu + h_{\tilde{n}} - s)\widehat{f}(s)ds + h_{\tilde{n}}q_{\tilde{n}} \in K,$$

it follows that $\tilde{u}_{\tilde{\nu}} \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$. Therefore, $(\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u})$ is an (ε, ψ) -approximate solution defined on $[\tau - \sigma, \widetilde{\nu}]$. Moreover, by construction, we have $(\theta, \beta, g, f, u) \leq (\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u})$ and $\mathbb{S}((\theta, \beta, g, f, u)) = \nu < \widetilde{\nu} = \mathbb{S}((\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}))$.

Now, from Theorem 2.3 we infer that there exists $(\theta, \beta, g, f, u) \in \mathcal{M}_T$ such that $\mathbb{S}((\theta, \beta, g, f, u)) = \mathbb{S}((\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}))$, for each $(\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}) \in \mathcal{M}_T$ with $(\theta, \beta, g, f, u) \leq (\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u})$. If $\mathbb{S}((\theta, \beta, g, f, u)) < T$ then, by the last step, there exists $(\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}) \in \mathcal{M}_T$ with $(\theta, \beta, g, f, u) \leq (\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u})$ and such that $\mathbb{S}((\theta, \beta, g, f, u)) < \mathbb{S}((\widetilde{\theta}, \widetilde{\beta}, \widetilde{g}, \widetilde{f}, \widetilde{u}))$. We conclude that $\mathbb{S}((\theta, \beta, g, f, u)) = T$ and this completes the proof of Lemma 3.1.

We are now prepared to complete the proof of Theorem 2.1.

Proof. Let $T \in (\tau, \tau + \rho]$ be given by Lemma 3.1 and let $(\varepsilon_n)_n$ be a decreasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} \varepsilon_n < +\infty$ and $\varepsilon_n \in (0,1)$ for every $n \in \mathbb{N}$.

Starting with one measurable selection $f_0(\cdot) \in F(\cdot, \varphi)$, in view of Lemma 3.1 we can define inductively the sequence $((\theta^n, \beta^n, g^n, f^n, u^n))_{n \in \mathbb{N}}$ such that $(\theta^n, \beta^n, g^n, f^n, u^n)$ is an (ε_n, f^n) -approximate solution on $[\tau - \sigma, T]$ for every $n \in \mathbb{N}$.

Thus, for every $n \in \mathbb{N}$ we have

(3.12)
$$u^n(t) = (Qf^n)(t) + \begin{cases} 0, & \text{for } t \in [\tau - \sigma, \tau], \\ \int_{\tau}^t S(\beta^n(t, s)) g^n(s) ds, & \text{for } t \in (\tau, T] \end{cases}$$

and

$$(B_1)$$
 $u_{\theta^n(t)}^n \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ for every $t \in [\tau, T)$;

$$(B_2) \ 0 \le t - \theta^n(t) \text{ for every } t \in [\tau, T];$$

$$(B_3) \ 0 \le \beta^n(t,s) \le t - \tau \text{ for } \tau \le s < t \le T;$$

$$(B_4) \|q^n(t)\| < \varepsilon_n \text{ a.e. on } [\tau, T];$$

$$(B_5) \ f^n(t) \in F(t,u^n_{\theta^n(t)}) \text{ a.e. on } [\tau,T];$$

$$(B_6) \|f^n(t) - f^{n-1}(t)\| \le d(f^{n-1}(t), F(t, u^n_{\theta^n(t)})) + \varepsilon_n \mu(t) \text{ a.e. on } [\tau, T];$$

$$(B_7) \|u_t^n - u_{\theta^n(t)}^n\|_{\sigma} \le \varepsilon_n \text{ for every } t \in [\tau, T];$$

$$(B_8)$$
 $u_T^n \in \mathfrak{K}_0 \cap B_{\sigma}(\varphi, r).$

We shall prove that $(u^n)_n$ converges uniformly to a function $u: [\tau - \sigma, T] \to X$ that is a solution of (1.1) and (1.2).

For this, we first show that for every $n \in \mathbb{N}$ we have

$$(C_1) \|f^n(t)\| \le \chi(t) \text{ a.e. on } [\tau, T];$$

$$(C_2) \|u^n(t) - (Qf^n)(t)\| \le M(T - \tau)\varepsilon_n \text{ for every } t \in [\tau, T];$$

$$(C_3) \|u_{\theta^{n+1}(t)}^{n+1} - u_{\theta^n(t)}^n\|_{\sigma} \le 2\varepsilon_n + \|u^{n+1} - u^n\|_T, \text{ for every } t \in [\tau, T],$$
where $\|\cdot\|_T$ is the norm in $C([\tau - \sigma, T]; X)$;

$$(C_4) \|f^{n+1}(t) - f^n(t)\| \le \mu(t)(\|u^{n+1} - u^n\|_T + 3\varepsilon_n) \text{ a.e. on } [\tau, T].$$

Indeed, (C_1) follows from (H_1) and (B_5) , (C_2) follows from (3.3), (3.12) and (B_4) . In order to prove (C_3) we observe that

$$||u_t^{n+1} - u_t^n||_{\sigma} = \sup_{-\sigma \le s \le 0} ||u^{n+1}(t+s) - u^n(t+s)||$$

$$\leq \sup_{\tau - \sigma \leq \nu \leq T} \|u^{n+1}(\nu) - u^n(\nu)\| = \|u^{n+1} - u^n\|_T$$

and thus by (B_7) we obtain that

$$||u_{\theta^{n+1}(t)}^{n+1} - u_{\theta^{n}(t)}^{n}||_{\sigma} \leq ||u_{\theta^{n+1}(t)}^{n+1} - u_{t}^{n+1}||_{\sigma} + ||u_{t}^{n+1} - u_{t}^{n}||_{\sigma} + ||u_{t}^{n} - u_{\theta^{n}(t)}^{n}||_{\sigma}$$
$$\leq \varepsilon_{n+1} + ||u_{t}^{n+1} - u_{t}^{n}||_{\sigma} + \varepsilon_{n} \leq 2\varepsilon_{n} + ||u^{n+1} - u^{n}||_{T}$$

for every $t \in [\tau, T]$. Finally, by (H_2) , (B_5) and (C_3) we have

$$\begin{aligned} \|f^{n+1}(t) - f^n(t)\| &\leq d\left(f^n(t), F\left(t, u_{\theta^{n+1}(t)}^{n+1}\right)\right) + \varepsilon_{n+1}\mu(t) \\ &\leq d_{HP}\left(F\left(t, u_{\theta^n(t)}^n\right), F\left(t, u_{\theta^{n+1}(t)}^{n+1}\right)\right) + \varepsilon_{n+1}\mu(t) \\ &\leq \mu(t)\left(\|u_{\theta^n(t)}^n - u_{\theta^{n+1}(t)}^{n+1}\|_{\sigma} + \varepsilon_{n+1}\right) \\ &\leq \mu(t)\left(\|u^{n+1} - u^n\|_{T} + 3\varepsilon_n\right) \end{aligned}$$

a.e. on $[\tau, T]$ and hence (C_4) is also checked. Further on, for every $t \in [\tau, T]$, by (3.6), (3.11), (C_3) and (C_5) we have

$$||u^{n+1}(t) - u^{n}(t)|| \le ||u^{n+1}(t) - (Qf^{n+1})(t)|| + ||(Qf^{n+1})(t) - (Qf^{n})(t)||$$

$$+ ||(Qf^{n})(t) - u^{n}(t)|| \le M(T - \tau)(\varepsilon_{n+1} + \varepsilon_n) + \int_{\tau}^{T} ||f^{n+1}(s) - f^{n}(s)|| ds$$

$$\le 2M(T - \tau)\varepsilon_n + M(3\varepsilon_n + ||u^{n+1} - u^{n}||_T) \int_{\tau}^{T} \mu(s) ds$$

$$\le M\left(2(T - \tau) + \frac{3}{2}\right)\varepsilon_n + \frac{1}{2}||u^{n+1} - u^{n}||_T.$$

Therefore, since $||u^{n+1}(t) - u^n(t)|| = 0$ for every $t \in [\tau - \sigma, \tau]$, we obtain

$$||u^{n+1}(t) - u^n(t)|| \le M\left(2(T-\tau) + \frac{3}{2}\right)\varepsilon_n + \frac{1}{2}||u^{n+1} - u^n||_T,$$

for every $t \in [\tau - \sigma, T]$, and thus

$$||u^{n+1} - u^n||_T \le M\left(2(T-\tau) + \frac{3}{2}\right)\varepsilon_n + \frac{1}{2}||u^{n+1} - u^n||_T,$$

for every $n \in \mathbb{N}$. It follows that

(3.13)
$$||u^{n+1} - u^n||_T \le M (4(T - \tau) + 3) \varepsilon_n$$

for every $n \in \mathbb{N}^*$ with $\sum_{n=1}^{\infty} \varepsilon_n < +\infty$ and so we deduce that $(u^n)_n$ converge uniformly to a function $u : [\tau - \sigma, T] \to X$.

From (C_4) and (3.13) we deduce that, for almost all $t \in [\tau, T]$, we have

$$||f^{n+1}(t) - f^n(t)|| \le \mu(t)(||u^{n+1} - u^n||_T + 3\varepsilon_n)$$

$$\leq \mu(t)(4M(T-\tau)+3M+3)\varepsilon_n$$

for every $n \in \mathbb{N}^*$. This implies that $(f^n)_n$ converge pointwise almost everywhere to a measurable function f. For any fixed $t \in [\tau - \sigma, T]$, by (C_1) and Lebesgue's Theorem, we obtain that $\lim_{n \to \infty} (Qf^n)(t) = (Qf)(t)$. Consequently, by (C_2) , we conclude that u(t) = (Qf)(t) for every $t \in [\tau - \sigma, T]$. For every $t \in [\tau, T]$ and $t \in [\tau, T]$

$$||u_{\theta^{n}(t)}^{n} - u_{t}||_{\sigma} \le ||u_{\theta^{n}(t)}^{n} - u_{t}^{n}||_{\sigma} + ||u_{t}^{n} - u_{t}||_{\sigma} \le \varepsilon_{n} + ||u_{t}^{n} - u_{t}||_{T}$$

and thus $u_{\theta^n(t)}^n \to u_t$ in $\|\cdot\|_{\sigma}$ as $n \to \infty$. In view of (B_1) and Remark 3.1 it follows that $u_t \in \mathcal{K}_0 \cap B_{\sigma}(\varphi, r)$ and hence $u(t) \in K \cap B(\varphi(0), r)$, for every $t \in [\tau, T]$.

Now, let us observe that, a.e. on $[\tau, T]$, we have

$$d(f(t), F(t, u_t)) \leq ||f(t) - f^n(t)|| + d\left(F\left(t, u_{\theta^n(t)}^n\right), F(t, u_t)\right)$$

$$\leq ||f(t) - f^n(t)|| + \mu(t)||u_{\theta^n(t)}^n - u_t||_{\sigma},$$

for every $n \in \mathbb{N}^*$. It follows, by letting $n \to \infty$, that $d(f(t), F(t, u_t)) = 0$ and thus, since F has closed values, $f(t) \in F(t, u_t)$ a.e on $[\tau, T]$.

We have proved that $u: [\tau - \sigma, T] \to X$ is a solution of (1.1) and (1.2), with $u(t) \in K$ for every $t \in [\tau, T]$, and so, (τ, φ) being arbitrarily fixed in $\mathcal{I} \times \mathcal{K}_0$, we have shown that K is a viable domain for (1.1).

Acknowledgment

The authors would like to express their gratitude to the referee for the careful reading of this manuscript and for constructive suggestions that considerably improved this paper.

REFERENCES

[1] J.P. Aubin, Viability Theory. Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA 1991.

- [2] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12.
- [3] H. Brézis and F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (3) (1976), 355–364.
- [4] C. Castaing and M.D.P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Portugal. Math. 54 (4) (1997), 485–507.
- [5] O. Cârjă and M.D.P. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Differential Equations 166 (2) (2000), 328–346.
- [6] O. Cârjă and C. Ursescu, The characteristics method for a first order partial differential equation, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 39 (4) (1993), 367–396.
- [7] O. Cârjă and I.I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA Nonlinear Differential Equations Appl. 4 (3) (1997), 401–424.
- [8] K. Deimling, Multivalued differential equations, De Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter & Co., Berlin 1992.
- [9] W.E. Fitzgibbon, Semilinear functional differential equations in Banach space,
 J. Differential Equations 29 (1) (1978), 1–14.
- [10] A. Fryszkowski, Existence of solutions of functional-differential inclusion in nonconvex case, Ann. Polon. Math. 45 (2) (1985), 121–124.
- [11] A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces, Portugal. Math. 57 (2) (2000), 203–217.
- [12] L. Górniewicz, Topological fixed point theory of multivalued mappings, Mathematics and its Applications, 495. Kluwer Academic Publishers, Dordrecht 1999.
- [13] G. Haddad, Monotone trajectories of differential inclusions and functionaldifferential inclusions with memory, Israel J. Math. 39 (1-2) (1981), 83-100.
- [14] G. Haddad, Monotone viable trajectories for functional-differential inclusions,
 J. Differential Equations 42 (1) (1981), 1–24.
- [15] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York 1993.
- [16] F. Iacob and N.H. Pavel, Invariant sets for a class of perturbed differential equations of retarded type, Israel J. Math. 28 (3) (1977), 254–264.
- [17] M. Kisielewicz, Differential inclusions and optimal control, Mathematics and its Applications (East European Series), 44, Kluwer Academic Publishers Group, Dordrecht; PWN—Polish Scientific Publishers, Warsaw 1991.

- [18] V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York 1981.
- [19] V. Lakshmikantham, S. Leela and V. Moauro, Existence and uniqueness of solutions of delay differential equations on a closed subset of a Banach space, Nonlinear Anal. 2 (3) (1978), 311–327.
- [20] S. Leela and V. Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces, Nonlinear Anal. 2 (1) (1978), 47–58.
- [21] V. Lupulescu and M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (3) (2004), 495–512.
- [22] E. Mitidieri and I.I. Vrabie, A class of strongly nonlinear functional differential equations, Universita degli Studi di Trieste, Instituto di Matematica, Quaderni Matematici II Serie 122 (1986), 1–19.
- [23] E. Mitidieri and I.I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (3) (1987), 627–649.
- [24] N.H. Pavel, Differential equations, flow invariance and applications, Research Notes in Mathematics, 113, Pitman (Advanced Publishing Program), Boston, MA 1984.
- [25] A. Syam, Contribution Aux Inclusions Différentielles, Doctoral thesis, Université Montpellier II, 1993.
- [26] A.A. Tolstonogov and I.A. Finogenko, On functional differential inclusions in Banach space with a nonconvex right-hand side, Soviet. Math. Dokl. 22 (1980), 320–324.
- [27] I.I. Vrabie, C_0 -semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam 2003.
- [28] G.F. Webb, Autonomous nonlinear functional differential equations and non-linear semigroups, J. Math. Anal. Appl. 46 (1974), 1–12.
- [29] Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (2) (1991), 213–237.

Received 20 October 2004