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e-mail: zagrodny@uksw.edu.pl

Abstract

Sufficient conditions for an equilibrium of maximal monotone
operator to be in a given set are provided. This partially answers
to a question posed in [10].
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1 Introduction

Let C be a convex subset of a real Banach space E and f : E −→ R∪ {+∞}
be a convex proper lsc function. It is interesting question under what con-
ditions

inf
E

f = inf
C

f ?

One of possibilities is to assume that C is compact and the derivative of f
satisfies the following condition:

for every x ∈ E \ C there is c ∈ C such that f ′(x; c− x) ≤ 0,(1.1)

(see, e.g. [2] for f being locally Lipshitzian with a compact set C [1] for a
vector case). If the infimum is attained in C then

0 ∈ ∂f(c) for some c ∈ C.(1.2)
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Of course, when C is singleton, C = {c} then (1.1) imply that

for every x ∈ E, x 6= c, and x∗ ∈ ∂f(x)

the inequality 〈x∗, x− c〉 ≥ 0 holds true.
(1.3)

With the Rockafellar maximal monotonicity theorem at hand we are able to
say that (1.1) (or (1.3)) implies (1.2) at once. Let us assume that C is a
weakly compact convex subset of E. S. Simons (see [8, 9, 10]) obtained the
following Theorem.

Theorem 11. (C-c∗ Theorem) If C is a nonempty weakly compact convex
subset of a real Banach space E, c∗ ∈ E∗ and for all (z, z∗) ∈ graph ∂f ,
there exists c ∈ C such that 〈z∗−c∗, z−c〉 ≥ 0 then (C×{c∗})∩ graph ∂f 6= ∅.

He also posed the question:

If C is a nonempty weakly compact convex subset of a real Banach space
E, C∗ ⊂ E∗ is a nonempty weak* compact convex subset of E∗ and

for all (z, z∗) ∈ graph ∂f , there exists (c, c∗) ∈ C × C∗

such that 〈z∗ − c∗, z − c〉 ≥ 0,
(1.4)

does it follow that

(C × C∗) ∩ graph ∂f 6= ∅ ?(1.5)

In particular, when E = R the answer is in the affirmative (see [12] or [10]
for details). Unfortunately, when E = R2 we can construct a convex C1

function for which (1.4) holds but (1.5) does not (see [12]). However, if
additionally C ⊥ C∗, then (1.4) implies (1.5) (see [12]). It is quite natural
to ask (see [8] or Open Question Section in [10], problem 25.9) whether we
can take a maximal monotone operator, say T , instead of the subdifferential
of convex function and to get (1.4) =⇒(1.5). Of course, in view of the above
we need an additional assumption to get the implication, but at this moment
we do not even know whether the following condition:

for all (z, z∗) ∈ graph T , there exists c ∈ C such that 〈z∗, z− c〉 ≥ 0,(1.6)

implies

(C × {0}) ∩ graph T 6= ∅.(1.7)
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Some others questions can be invoked too. Can the compactness assumption
be relaxed? Does (1.4) imply (1.5) if T is put instead of the subdifferential
and C ⊥ C∗? Can we take others sets than the product C × C∗?

Herein we deal with two of them. Namely, in Section 2 we get a partial
answer to the question, when the condition (1.6) implies (1.7). In Section 3
we relax the compactness assumption having

graph ∂f ∩
(
(C + B(0, ε))×B(0, ε)

)
6= ∅ for every ε > 0,(1.8)

where B(0, ε) is the ball at the origin with the radius ε.

2 Maximal monotone operators

The main tool of our reasoning is the notion of subdifferential of convex
function (we refer to [3] for details, see also [6]). One of advantages of
subdifferential calculus is that it allows us to treat nondifferentiable objects
in differentiable manner, so let us recall the notion. If f : E −→ R∪ {+∞}
is convex and finite at x ∈ E then

∂f(x) := {x∗ ∈ E∗ | f(x + h) ≥ f(x) + 〈x∗, h〉, ∀h ∈ E}.

For any subset C of E, dC(x) stands for the distance of x from C as usual.
If C is convex, then d2

C is a convex continuous function on E. Below several
of properties of d2

C are gathered.

Lemma 21. Let E be a real normed space and C be a convex subset of E,
C 6= ∅. Then
(1) ∀c ∈ cl C, ∂d2

C(c) = {0}, where cl is the topological closure of C.
(2) ∀x ∈ E \ C, ∀c ∈ C, ∀x∗ ∈ ∂d2

C(x), 〈x∗, x− c〉 ≥ d2
C(x).

(3) ( d2
C(xn) → 0 and x∗n ∈ ∂d2

C(xn)) =⇒ ‖ x∗n ‖→ 0.
(4) ∀x ∈ E, ∀c ∈ C, d2

C(x) ≥ (max{0, ‖ x− c ‖ − diam C})2.

Proof. 1. Let c ∈ cl C and c∗ ∈ ∂d2
C(c). By the definition of the subdiffer-

ential we get

∀t > 0, ∀h ∈ E, 〈c∗, th〉 ≤ d2
C(c + th)− d2

C(c) ≤ t2 ‖ h ‖2,

thus
∀h ∈ E, 〈c∗, h〉 ≤ 0.
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2. Let x ∈ E \ C, x∗ ∈ ∂d2
C(x) and c ∈ C. For every 1 ≥ t > 0 we have

〈x∗, t(c− x)〉 ≤ d2
C(x + t(c− x))− d2

C(x)

≤ (1− t)d2
C(x) + td2

C(c)− d2
C(x) = −td2

C(x),

thus 〈x∗, (x− c)〉 ≥ d2
C(x).

3. We have for all h ∈ E and for all t > 0

〈x∗n, th〉 ≤ d2
C(xn + th)− d2

C(xn)

≤ (dC(xn + th)− dC(xn))(dC(xn + th) + dC(xn))

≤ t ‖ h ‖ (dC(xn + th) + dC(xn)),

hence 〈x∗n, h〉 ≤ 2 ‖ h ‖ dC(xn), which implies ‖ x∗n ‖ ≤ 2dC(xn) and
‖ x∗n ‖→ 0, whenever n → 0.

4. Let x ∈ E and c ∈ C.
We have

dC(x) = inf
c′∈C

‖ x− c′ ‖≥ inf
c′∈C

(‖ x− c ‖ − ‖ c− c′ ‖) ≥‖ x− c ‖ −diam C,

hence
d2

C(x) ≥ {max{0, ‖ x− c ‖ −diam C}}2.

It follows from the proof of (1) that d2
C is Frechet differentiable at each

c ∈ cl C with the derivative equal to 0. We know also that the subdifferential
mapping is upper semicontinuous (norm-to-norm, see Lemma 2.6 of [3]) at
such points, so (3) is a consequence of (1). However, herein for the sake of
the reader convenience the proof is done directly. Let us also observe that
by (2) and (4), the subdifferential ∂d2

C is a coercive operator, thus T + ∂d2
C

is coercive as well. If E were a reflexive Banach space then 0 would be in
the range of T + ∂d2

C (see [11, Section 32.14, Corollary 32.35] for example).
However, if E is not reflexive then we neither know if 0 ∈ cl R(T + ∂d2

C) nor
even whether T + ∂d2

C is maximal monotone operator, where R(T + ∂d2
C)

stands for the range of the operator T + ∂d2
C .

Below under the assumption that (1.6) holds true we provide a necessary
and sufficient conditon for 0 ∈ T (C), whenever T is a maximal monotone
operator on a Banach space and C is weakly compact convex and nonempty.
This result has been obtained together with M. Przeworski (we refer also to
[5] for the nonreflexive case and to [4] for the reflexive one).
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Theorem 22. Let E be a real Banach space, C ⊂ E be a weakly compact
convex nonempty subset of E, and T : E →→ E∗ be a maximal monotone
operator with dom T 6= ∅. Then

(1.6) holds and 0 ∈ clR(T + ∂d2
C) ⇐⇒ 0 ∈ T (C)

Proof. Of course, if 0 ∈ T (C) for some c ∈ C then by (1) of Lemma 21 we
get {0} = ∂d2

C(c) and

0 ∈ T (c) + ∂d2
C(c) ⊂ cl R(T + ∂d2

C).

Condition (1.6) is a consequence of the monotonicity (keep in mind (c, 0) ∈
graph T ).

Let us consider the case 0 ∈ cl R(T + ∂d2
C). Then there are sequences

(xn) ⊂ dom T and (t∗n), (y∗n) ⊂ E∗ such that

t∗n ∈ T (xn), y∗n ∈ ∂d2
C(xn) for every n ∈ N

and x∗n = t∗n + y∗n tends to 0, whenever n tends to ∞. By (1.6) there are
cn ∈ C such that 〈t∗n, xn − cn〉 ≥ 0 for every n ∈ N, so by (2) of Lemma 21
we arrive at

‖ x∗n ‖ ‖ xn − cn ‖≥ 〈t∗n + y∗n, xn − cn〉 ≥ d2
C(xn) for every n ∈ N.(2.1)

Using (4) of Lemma 21 we get

‖ x∗n ‖ ‖ xn − cn ‖≥
{
max{0, ‖ xn − cn ‖ −diam C}

}2
for every n ∈ N.

Since ‖ x∗n ‖→ 0, so the above inequality ensures the existence of M ≥ 0
such that ‖ xn − cn ‖≤ M for every n ∈ N, thus (2.1) implies d2

C(xn) → 0,
whenever n → ∞. The set C is weakly compact and d2

C is weakly
lower semicontinuous (see Corollary 3.19 of [3]), so the Weierstrass theorem
ensures the existence of (c̃n) ⊂ C such that

dC(xn) =‖ xn − c̃n ‖
for every n ∈ N. By the Eberlein-Smulian therorem (see e.g. [7]) we are able
to choose a subsequence of (c̃n) ⊂ C weakly converging to c̄ ∈ C. Without

loss of generality we assume that c̃n
weakly
⇁ c̄. Of course, xn

weakly
⇁ c̄, since

‖ xn − c̃n ‖→ 0. It follows from (3) of Lemma 21 that y∗n −→ 0, so t∗n → 0.
By the monotonicity of T we have

〈t∗n − t∗, xn − t〉 ≥ 0
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for every (t, t∗) ∈ graph T . Since t∗n −→ 0, xn
weakly
⇁ c̄, so

〈t∗, t− c̄〉 ≥ 0

for every (t, t∗) ∈ graph T , which by the maximal monotonicity of T implies
0 ∈ T (c̄).

3 Convex function

In this section we shall show that (1.6) entails the existence of (cn) ⊂ C and
c∗n ∈ T (cn) such that ‖ c∗n ‖→ 0, whenever C is convex closed and bounded,
T = ∂f and some mild additional assumptions on f are imposed. This
suggests that for some class of maximal monotone operators we are able to
get positive answer to the question concerning the compactness assumption.
In the proof of the result we need the following Corollary.

Corollary 31. Let g : E −→ R ∪ {+∞} be a proper function and C, S
be subsets of a real Banach space E, ε > 0 be fixed. If for every sequence
(vn) ⊂ S such that

g(vn) > g(vn+1) + εmin{d2
C(vn+1), d2

C(vn)} ‖ vn − vn+1 ‖
for every n ∈ N, there is v ∈ S such that for some subsequence (vnk

) ⊂ (vn)

g(vnk
) > g(v) + ε min{d2

C(v), d2
C(vnk

)} ‖ vnk
− v ‖

for every k ∈ N, then there is v̄ ∈ S such that

g(v̄) ≤ g(z) + εmin{d2
C(v̄), d2

C(z)} ‖ v̄ − z ‖
for every z ∈ S.

Proof. This is a straightforward consequence of Example 2.3 and
Theorem 3.7 from [2].

Let us notice that if we introduce a preference relation Â⊆ S ×S as follows

u Â v ⇐⇒ g(u) > g(v) + εmin{d2
C(v), d2

C(u)} ‖ v − u ‖
then v̄, which existence is ensured by the above Corollary, is (Â,Â∗)-
maximal element of S = S(g, α) := {x ∈ E | g(x) ≤ α} for any (w,α)
∈ epi g (see [2]).

The below result corresponds to Theorem 6.1 of [9] (see also [8] and [1]).
The main difference between these two results is that the weak compactness
of C is not assummed.
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Theorem 32. Let E be a real Banach space and C ⊂ E be a convex bounded
and nonempty subset of E. Assume that f : E −→ R ∪ {+∞} is a convex
lower semicontinuous function such that

(1) if dC(xn) → 0 and
∑∞

n=1 d2
C(xn+1) ‖ xn − xn+1 ‖< ∞ then

lim supn→∞ f(xn) ≥ infC f ,
(2) ∀(x, x∗) ∈ graph ∂f, supc∈C〈x∗, x− c〉 ≥ 0.

Then
inf
E

f = inf
C

f.

Proof. Let us suppose that infE f < infC f . Let us fix any x̄ ∈ E such
that f(x̄) < infC f . We are able to find ε, ε′ > 0 such that

f(x̄) + εd2
C(x̄) < inf

C

(
f + εd2

C

)
(3.1)

and for all v ∈ E,
(
f(v) + εd2

C(v) ≤ f(x̄) + εd2
C(x̄)

)
=⇒ ε′(dC(v) + diam C) < 2−1ε.(3.2)

Put g(y) := f(y) + εd2
C(y) for every y ∈ E and define the following relation

u Â v ⇐⇒ g(u) > g(v) + ε′min{d2
C(v), d2

C(u)} ‖ v − u ‖

for every u, v ∈ S(g, g(x̄)) := {z ∈ E | g(x̄) ≥ g(z)}. We shall show that
there is (Â,Â∗)-maximal element in S(g, g(x̄)), namely for some v̄ ∈
S(g, g(x̄)) and every z ∈ S(g, g(x̄)) the following inequality holds true

g(v̄) ≤ g(z) + ε′min{d2
C(v̄), d2

C(z)} ‖ v̄ − z ‖ .

For this reason let us take any sequence (vn) ⊂ S(g, g(x̄)) such that vn Â
vn+1 for every n ∈ N. Of course, the function g is bounded from below on
S(g, g(x̄)) since it is the sum of a convex function and εd2

C . Thus we get

∞ > g(vn)− g(vn+1) > ε′min{d2
C(vn), d2

C(vn+1)} ‖ vn − vn+1 ‖(3.3)

for every n ∈ N, and for some m ∈ R

g(v1) ≥ m + ε′
k∑

i=1

min{d2
C(vi), d2

C(vi+1)} ‖ vi − vi+1 ‖ for every k ∈ N.
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If there is δ > 0 such that d2
C(vi) ≥ δ for every i ∈ N, then ∞ >∑∞

i=1 ‖ vi−vi+1 ‖, so vi → v0 for some v0 ∈ E. Let us put ak := infi≥k d2
C(vi)

and consider the following two cases.

Case I. There is k ∈ N such that ak = limi→∞ d2
C(vi).

Of course, we get

g(vi) > g(vi+1) + ε′ak ‖ vi − vi+1 ‖

for every i ≥ k, which implies

g(vi) > g(v0) + ε′ak ‖ vi − v0 ‖
= g(v0) + ε′min{d2

C(vi), d2
C(v0)} ‖ vi − v0 ‖

for every i ≥ k. So the assumption of Corollary 31 is satisfied.

Case II. There is a subsequence nk such that d2
C(vnk

) ≤ d2
C(vn(k+1)

) ≤ . . .

and d2
C(vn(k+j)

) ≤ d2
C(vi) for every j = 1, 2, . . . and i ≥ n(k+j).

In this case we have

g(vi) > g(vj) + ε′d2
C(vnk

) ‖ vi − vj ‖

for every k and j > i ≥ nk, thus

g(vnk
) > g(v0) + ε′min{d2

C(vnk
), d2

C(v0)} ‖ vnk
− v0 ‖

for every k. Again the assumption of Corollary 31 is satisfied.
It follows from Corollary 31 that for some v ∈ S(g, g(x̄)) and every

y ∈ S(g, g(x̄)) we have

g(v) ≤ g(y) + ε′min{d2
C(v), d2

C(y)} ‖ v − y ‖ .

If g(z) ≥ g(x̄) then, of course, g(v) ≤ g(z) + ε′min{d2
C(v), d2

C(z)} ‖ v − z ‖,
so

g(v) ≤ g(y) + ε′min{d2
C(v), d2

C(y)} ‖ v − y ‖
for every y ∈ E. Hence, we infer the existence v∗ ∈ ∂f(v), y∗ ∈ ε∂d2

C(v)
and z∗ ∈ ε′d2

C(v)B(0, 1) (B(0, 1) stands for the unit ball in the dual space)
such that v∗ + y∗ + z∗ = 0. On the other hand, by assumption (2) of the
Theorem, property 2 of Lemma 21 and (3.2) we get
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0 = sup
c∈C

〈v∗ + y∗ + z∗, v − c〉 ≥ εd2
C(v)− ε′d2

C(v){dC(v) + diam C} > 0,

a contradiction.
In order to finish the proof let us assume that lim infn→∞ d2

C(vn) = 0.
Then, choose a subsequence (vnk

) ⊂ (vn) such that limk→∞ d2
C(vnk

) = 0 and
d2

C(vi) ≥ d2
C(vnk

) for every k ∈ N, i ≤ nk and d2
C(vnk

) is decreasing. By
(3.3) we get

g(x̄) > g(v1) > g(vnk
)(3.4)

for every k ∈ N, and by the triangle inequality

∞ >
∞∑

i=1

min{d2
C(vi), d2

C(vi+1} ‖ vi−vi+1 ‖≥
∞∑

k=1

d2
C(vn(k+1)

) ‖ vnk
−vn(k+1)

‖ .

Hence, by (3.1) and (3.4) we get

inf
c∈C

f(c) > lim
k→∞

g(vnk
) + g(x̄)− g(v1), d2

C(vnk
) −→ 0

and

∞ >
∞∑

k=1

d2
C(vn(k+1)

) ‖ vnk
− vn(k+1)

‖,

which contradicts assumption 1.

Assumption (1) of the above Theorem needs some comments. It is obvious
that if C is weakly compact then dC(xn) → 0 implies a weak convergence of
some subsquence of (xn) to a point c of C, so the weak lower semicontinuity
of f (f is assumed to be convex) forces

lim inf
k→∞

f(xnk
) ≥ f(c) ≥ inf

C
f,

which, of course, ensures (1). The assumption is also satisfied if f is contin-
uous on E. Then f is Lipschitzian on some neighbourhood of C, say with
M > 0 and

f(xn) ≥ f(cn)− 2MdC(xn)

for some cn ∈ C, which implies

dC(xn) → 0 =⇒ lim inf
n→∞ f(xn) ≥ inf

C
f.
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Similar reasoning can be done if there is c ∈ C at which f is continuous or
domf ∩ int C 6= ∅. Then

0 ∈ cl ∂(f + ψC)(C) = cl (∂f(·) + ∂ψ(·))(C),

where ψC is 0 on C and +∞ outside the set. Let dC(xn) −→ 0, ‖ xn − cn ‖
→ 0 and for some c′ ∈ C

p∗ ∈ ∂f(c′) + NC(c′), p∗ = c∗ + y∗, c∗ ∈ ∂f(c′), y∗ ∈ NC(c′).

For every n ∈ N we have

f(xn) ≥ f(c′) + 〈c∗, xn − c′〉 = f(c′) + 〈c∗, xn − cn〉+ 〈c∗, cn − c′〉
≥ infC f− ‖ c∗ ‖‖ xn − cn ‖ +〈p∗, cn − c′〉,

hence lim supn→∞ f(xn) ≥ infC f− ‖ p∗ ‖ diam C, since 0 ∈ cl (∂f(·) +
∂ψ(·))(C), so

dC(xn) → 0 =⇒ lim sup
n→∞

f(xn) ≥ inf
C

f,

thus (1) of Theorem is satisfied.
Let us assume that infC f ∈ R and infE f = infC f . Of course

graph ∂f ∩ ((C + B(0, ε))×B(0, ε)) 6= ∅

for every ε > 0. Thus (1.8) holds true. Hence the assumptions of Theorem
3.2 are sufficient to get (1.8). In order to get 0 ∈ ∂f(C) we have to preserve
that argminf 6= ∅.

Example 33. Let C be a bounded convex subset of a real Banach space E
and C∗ be convex weak∗ compact subset of the dual E∗. Let us assume that
0 ∈ C∗ and

sup
c∗∈C∗

inf
c∈C

〈c∗, c〉 = 0,

then
inf
c∈C

sup
c∗∈C∗

〈c∗, c〉 = 0.

Indeed, let us define f(x) := maxc∗∈C∗〈c∗, x〉 for x ∈ E. Of course,
f(x) ≥ 0 for every x ∈ E, and f(0) = 0. Let x ∈ E \ C and x∗ ∈ ∂f(x).
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The function f is convex Lipschitz continuous and positively homogenous,
so 〈x∗, x〉 = f(x) (see e.g. Lemma 5.10 of [3]). Thus

sup
c∈C

〈x∗, x− c〉 = f(x)− inf
c∈C

〈x∗, c〉 ≥ f(x) ≥ 0.

It follows from the above Theorem that

inf
c∈C

f = inf
x∈E

f = 0,

which guarantees the desired equality.
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