Differential Inclusions, Control and Optimization 21 (2001) 51-79
doi: 10.7151/dmdico.1017

[BIBTex] [PDF] [PS]


Dieter Schott

Electrotechnics and Computer Science College, Wismar
Philipp-Müller-Str. PF 1210
D-23952 Wismar, Germany
e-mail: d.schott@et.hs-wismar.de


Strongly Fejér monotone mappings are widely used to solve convex problems by corresponding iterative methods. Here the maximal of such mappings with respect to set inclusion of the images are investigated. These mappings supply restriction zones for the successors of Fejér monotone iterative methods. The basic tool is the representation of the images by intersection of certain balls.

Keywords: set-valued mappings, Fejér monotone mappings, relaxations, central stretching, convex sets, ball intersections.

2000 Mathematics Subject Classification: 65J05, 47H04, 47H09.


[1] I.I. Eremin and V.D. Mazurov, Nestacionarnye Processy Programmirovanija, Nauka, Moskva 1979.
[2] J.-P. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer-Verlag, Berlin et. al. 1993.
[3] J.T. Marti, Konvexe Analysis, Birkhäuser Verlag, Basel 1977.
[4] R.T. Rockafellar, Convex Analysis, Princeton, New Jersey 1972.
[5] D. Schott, Iterative solution of convex problems by Fejér monotone methods, Numer. Funct. Anal. Optimiz. 16 (1995), 1323-1357.
[6] D. Schott, Basic properties of Fejér monotone sequences, Rostock. Math. Kolloq. 49 (1995), 57-74.
[7] D. Schott, Basic properties of Fejér monotone mappings, Rostock. Math. Kolloq. 50 (1997), 71-84.
[8] D. Schott, About strongly Fejér monotone mappings and their relaxations, Zeitschr. Anal. Anw. 16 (1997), 709-726.
[9] D. Schott, Weak convergence of Fejér monotone iterative methods, Rostock. Math. Kolloq. 51 (1997), 83-96.
[10] D. Schott, Strongly Fejér monotone mappings, Part III: Interval union model for maximal mappings, preprint.
[11] H. Stark, (ed.), Image recovery: Theory and applications, Academic Press, New York 1987.

Received 20 February 2000