Discussiones Mathematicae Probability and Statistics 20(1) (2000) 249-260


Mariusz Michta

Institute of Mathematics, Technical University
Podgórna 50, 65-246 Zielona Góra, Poland
e-mail: m.michta@im.uz.zgora.pl


The purpose of this work is a study of the following insurance reserve model:

R(t) = η+


σ(s,R(s))dWs-Z(t), t ∈ [0,T],
P(η ≥ c) ≥ 1-ε, ε ≥ 0.

Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: inf0 ≤ t ≤ TP{R(t) ≥ c} ≥ γ is considered.

Keywords: martingales, stochastic equations, reserve process, Girsanov`s theorem, viability.

1999 Mathematics Subject Classiffication: 60H10, 60G44, 90A46.


[1] J.P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 595-613.
[2] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1) (1998), 1-15.
[3] R. Bergmann and D. Stoyan, On exponential bounds for the waiting time distribution function in GI/G/1, Journal of Applied Probability 13 (1976), 411-417.
[4] P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York and London 1968.
[5] F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbated by diffiusion, Insurance: Mathematics and Economics 10 (1991), 51-59.
[6] S. Gauthier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (6) 1395-1414.
[7] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-New York 1988.
[8] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-75.
[9] T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (3) (1991), 1035-1070.
[10] F. Lundberg, I. Approximerad Framställning av Sannonlikhetsfunktionen, II, A°terförsäkering av Kollektivresker, Almqvist and Wiksell, Upsala 1903.
[11] L. Mazliak, A note on weak viability for controlled diffusion, Prepublications du Lab. de Probab. Universite de Paris 6, 7, 513 (1999).
[12] M. Michta, A note on viability under distribution constrains, Discuss. Math. Algebra and Stochastic Methods 18 (2) (1998), 215-225.
[13] S.S. Petersen, Calculation of ruin probabilities when the premium depends on the current reserve, Scand. Act. J. (1990), 147-159.
[14] Ph. Protter, A connection between the expansion of filtrations and Girsanov`s theorem, Stochastic partial differential equations, Lecture Notes in Math. 1930 Springer, Berlin-New York, (1989), 221-224.
[15] Ph. Protter, Stochastic Integration and Differential Equations, Springer, Berlin-New York 1990.
[16] M. Yor, Grossissement de filtrations et absolue continuite de noyaux, Springer, Berlin-New York, Lecture Notes in Math. 1118 (1985), 6-15.

Received 10 September 2000
Revised 15 November 2000