Discussiones Mathematicae Differential Inclusions 16(1) (1996) 75-89



Jan Andres and Tomá Turský

Dept. of Math. Analysis, Fac. of Science, Palacký University
Tomkova 40, 779-00 Olomouc-Hejín, Czech Republic


Asymptotic estimates of solutions and their derivatives for n-th order nonhomogeneous ODEs with constant coefficients are obtained, provided the associated characteristic polynomial is (asymptotically) stable. Assuming, additionally, the stability of the so called ``shifted polynomials'' (see below) to the characteristic one, the estimates can be still improved.

Keywords: Asymptotic estimates, nonhomogeneous equations, inverse operator method, Esclangon's technique.

1991 Mathematics Subject Classification: 34A30, 34D05, 34D40.


[1] J. Andres, Langrange stability of higher-order analogy of damped pendulum equations, Acta UPO 106, Phys. 31 (1992), 154-159.
[2] J. Andres, On the problem of Hurwitz for shifted polynomials, Acta UPO 106, Phys. 31 (1992), 160-164 (Czech).
[3] J. Andres and V. Vlek, Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing, Rend. Ist. Mat. Univ. Trieste 21 (1) (1989), 128-143.
[4] E.A. Barbashin and V.A. Tabueva, Dynamical Systems with Cylindrical Phase Space, Nauka, Moscow 1969 (Russian).
[5] B.F. Bylov, R.E. Vinograd, D.M. Grobman and V. V. Nemytskii, Theory of Liapunov Exponents, Nauka, Moscow 1966 (Russian).
[6] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer, Berlin 1959.
[7] W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, Boston 1965.
[8] E. Esclangon, Sur les intégrales bornées d'une équation différentielle linéaire, C. R. Ac. de Sc., Paris 160 (1915), 775-778.
[9] J.O.C. Ezeilo, A boundedness theorem for a certain n-th order differential equation, Ann. Mat. Pura Appl. 4 (88) (1971), 135-142.
[10] A.F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, Moscow 1985 (Russian).
[11] J. Kaucký, Elementary Methods for Solutions of Ordinary Differential Equations, SAV, Praha 1953 (Czech).
[12] W. Kaplan, Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1940.
[13] M.A. Krasnosel'skii, V. Sh. Burd and Yu. S. Kolesov, Nonlinear Almost Periodic Oscillations, Nauka, Moscow 1970 (Russian).
[14] B.M. Levitan, Almost-Periodic Functions, GITTL, Moscow 1953 (Russian).
[15] R. Reissig, Ein Beschränkheitsatz für gewisse Differentialgleichungen beliebiger Ordnung, Monatsb. Deutsch. Akad. Wiss. Berlin 6 (1964), 407-413.
[16] K. Rychlík, Introduction to the Analytical Theory of Polynomials with the Real Coefficients, SAV, Praha 1957 (Czech).
[17] G. Sansone, Equazioni differenziali nel campo reale II, N. Zanichelli, Bologna 1949.
[18] S. Sdziwy, Asymptotic properties of solutions of nonlinear differential equations of higher order, Zeszyty Nauk. Univ. Jagiel. 131 (1966), 69-80.
[19] P.N.V. Tu, Dynamical Systems (An Introduction with Applications in Economics and Biology), Springer, Berlin 1992.
[20] J. Voráek, Note on paper [1] of S. Sdziwy, Acta UPO 33 (1971), 157-161.