Discussiones Mathematicae Differential Inclusions 19 (1999) 45-65



Andrea Gavioli

Dipartimento di Matematica Pura e Applicata
Universita di Modena, via Campi 213/B, 41100 Modena, Italy

e-mail: gavioli@unimo.it


We prove that the solutions of a sweeping process make up an Rδ-set under the following assumptions: the moving set C(t) has a lipschitzian retraction and, in the neighbourhood of each point x of its boundary, it can be seen as the epigraph of a lipschitzian function, in such a way that the diameter of the neighbourhood and the related Lipschitz constant do not depend on x and t. An application to the existence of periodic solutions is given.

Keywords: nonconvex, sweeping process, wedged.

1991 Mathematics Subject Classification: 34A60, 34C25.


[1] R.A. Adams, Sobolev Spaces, Academic Press 1975.
[2] J. Andres, G. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., to appear.
[3] J. Andres, G. Gabor and L. Górniewicz, Topological structure of solution sets to multivalued asymptotic problems, Palacky University (1999), preprint.
[4] J. Andres, On the multivalued Poincaré operators, Topol. Meth. Nonlin. Anal. 10 (1997), 171-182.
[5] J. P. Aubin and A. Cellina, Differential Inclusions; Set-valued Maps and Viability Theory, Springer Verlag, Berlin 1984.
[6] H. Benabdellah, Existence of solutions to the nonconvex sweeping process, preprint, University of Marrakesh, Morocco.
[7] H. Benabdellah, C. Castaing, A. Salvadori and A. Syam, Nonconvex sweeping process, Journal of Applied Analysis 2 (2) (1996), 217-240.
[8] D. Bothe, Multivalued Differential Equations on Graphs, Nonlinear Analysis 18 (3) (1992), 245-252.
[9] C. Castaing and M.D.P. Monteiro Marques, Sweeping process by nonconvex moving sets with perturbation, C.R. Acad. Sci. Paris, Série I 319 (1994), 127-132.
[10] C. Castaing and M.D.P. Monteiro Marques, Periodic solutions of evolution problem associated with moving convex set, C.R. Acad. Sci. Paris, Série I 321 (5) (1995), 531-536.
[11] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, John Wiley & Sons 1983.
[12] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer Verlag, New York-Berlin-Heidelberg 1998.
[13] G. Colombo and V. Goncharov, The Sweeping Process without convexity, preprint, University of Padova, Italy.
[14] F.S. De Blasi and J. Myjak, On the solution sets for differential inclusions, Bull. Polish Acad. Sci. 33 (1985), 17-23.
[15] K. Deimling, Multivalued Differential Equations, De Gruyter series in Nonlinear Analysis and Applications, Berlin 1992.
[16] A. Gavioli, A viability result in the upper semicontinuous case, J. Convex Analysis 5-2 (1998).
[17] L. Górniewicz, On the Solution Sets of Differential Inclusions, J. Math. Anal. Appl. 113 (1986), 235-244.
[18] L. Górniewicz, Topological approach to differential inclusions, in Topological Methods in Differential Equations and Inclusions, ed. by A. Granas and M. Frigon, Kluwer Academic Publishers, Dordrecht-Boston-London 1995.
[19] L. Górniewicz, Homological methods in fixed point theory of multivalued mappings, Dissertationes Math. 129 (1976), 1-71.
[20] S. Hu and N.S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constraints, J. Diff. Equat. 107 (1994), 280-289.
[21] S. Hu and N.S. Papageorgiou, Delay differential inclusions with constraints, Proc. Amer. Math. Soc. 123 (7) (1995), 2141-2150.
[22] M.D.P. Monteiro Marques, Differential Inclusions in Monsmooth Mechanical Problems, Shocks and Dry Friction, Birkhäuser Verlag 1993.
[23] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Equat. 26 (1977), 347-374.
[24] S. Plaskacz, Periodic solutions of differential inclusions on compact subsets of Rn, J. Math. Anal. Appl. 148 (1990), 202-212. Boll. U.M.I. (7) 7-A (1993), 409-420.
[25] R.T. Rockafellar, Clarke's tangent cones and the boundaries of closed sets in Rn, Nonlinear Analysis 3 (1) (1979), 145-154.
[26] M. Valadier, Quelques problemes d'entraî nement unilatéral en dimension finie, Sém. d'Anal. Convexe Montpellier (1988), exposé n. 8.

Received 5 June 1999