Differential
Inclusions, Control and Optimization 20 (2000) 41-50

doi: 10.7151/dmdico.1003

Leszek Gasiński

*Jagiellonian University, Institute of Computer
Science
ul. Nawojki 11, 30-072 Cracow, Poland*

In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.

**Keywords and phrases:** optimal shape design, mapping method, hemivariational
inequalities, Clarke subdifferential.

**1991 Mathematics Subject Classification:** 49J24.

[1] | W. Bian, Existence Results for Second Order Nonlinear Evolution Inclusions,
Indian J. Pure Appl. Math. 29 (11) (1998), 1177-1193. |

[2] | F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces,
J. of Funct. Anal. 11 (1972), 251-294. |

[3] | K.C. Chang, Variational methods for nondifferentiable functionals and applications
to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. |

[4] | F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New
York 1983. |

[5] | Z. Denkowski and S. Migórski, Optimal Shape Design Problems for a Class of Systems
Described by Hemivariational Inequality, J. Global. Opt. 12 (1998), 37-59. |

[6] | L. Gasiński, Optimal Shape Design Problems for a Class of Systems Described by
Parabolic Hemivariational Inequality, J. Global. Opt. 12 (1998), 299-317. |

[7] | L. Gasiński, Hyperbolic Hemivariational Inequalities, in preparation. |

[8] | W.B. Liu and J.E. Rubio, Optimal Shape Design for Systems Governed by Variational
Inequalities, Part 1: Existence Theory for the Elliptic Case, Part 2: Existence Theory
for Evolution Case, J. Optim. Th. Appl. 69 (1991), 351-371, 373-396. |

[9] | A.M. Micheletti, Metrica per famiglie di domini limitati e proprieta generiche
degli autovalori, Annali della Scuola Normale Superiore di Pisa 28 (1972),
683-693. |

[10] | J.J. Moreau, Le Notions de Sur-potential et les Liaisons Unilatérales en
Élastostatique, C.R. Acad. Sc. Paris 267A (1968), 954-957. |

[11] | J.J. Moreau, P.D. Panagiotopoulos and G. Strang, Topics in Nonsmooth Mechanics,
Birkhäuser, Basel 1988. |

[12] | F. Murat and J. Simon, Sur le Controle par un Domaine Geometrique, Preprint no.
76015, University of Paris 6 (1976), 725-734. |

[13] | Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational
Inequalities and Applications, Dekker, New York 1995. |

[14] | P.D. Panagiotopoulos, Nonconvex Superpotentials in the Sense of F.H. Clarke and
Applications, Mech. Res. Comm. 8 (1981), 335-340. |

[15] | P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics,
Z. Angew. Math. Mech. 65 (1985), 29-36. |

[16] | P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and
Nonconvex Energy Functions, Birkhäuser, Basel 1985. |

[17] | O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New
York 1984. |

[18] | J. Sokoowski and J.P. Zolesio, Introduction to Shape Optimization. Shape
Sensitivity Analysis, Springer Verlag 1992. |

Received 16 November 1999

Revised 15 March 2000