Differential Inclusions, Control and Optimization 20 (2000) 195-207
doi: 10.7151/dmdico.1012

[BIBTex] [PDF] [PS]


Marcin Studniarski

Faculty of Mathematics, University of Łódź
ul. S. Banacha 22, 90-238 Łódź, Poland

e-mail: marstud@math.uni.lodz.pl


We present a characterization of weak sharp local minimizers of order one for a function f:RnR defined by f(x): = max{fi(x)|i = 1,...,p}, where the functions fi are strictly differentiable. It is given in terms of the gradients of fi and the Mordukhovich normal cone to a given set on which f is constant. Then we apply this result to a smooth nonlinear programming problem with constraints.

Keywords and phrases: weak sharp minimizer of order one, maximum function, strictly differentiable function, normal cone.

1991 Mathematics Subject Classification: 49J52; 49K35.


[1] J.F. Bonnans and A. Ioffe, Second-order sufficiency and quadratic growth for nonisolated minima, Math. Oper. Res. 20 (1995), 801-817.
[2] J.M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), 9-52.
[3] J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim. 31 (1993), 1340-1359.
[4] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York 1998.
[5] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization. Convex Analysis without Linearity, Kluwer Academic Publishers, Dordrecht 1997.
[6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin 1998.
[7] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim. 24 (1986), 1044-1049.
[8] M. Studniarski, Second-order necessary conditions for optimality in nonsmooth nonlinear programming, J. Math. Anal. Appl. 154 (1991), 303-317.
[9] M. Studniarski, Characterizations of strict local minima for some nonlinear programming problems, Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts).
[10] M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming, System Modelling and Optimization (Detroit, MI, 1997), 207-215, Chapman & Hall/CRC Res. Notes Math., 396, 1999.
[11] M. Studniarski and M. Studniarska, New characterizations of weak sharp and strict local minimizers in nonlinear programming, Preprint 1999/15, Faculty of Mathematics, University of ód\'z.
[12] M. Studniarski and D.E. Ward, Weak sharp minima: characterizations and sufficient conditions, SIAM J. Control Optim. 38 (1999), 219-236.

Received 10 December 1999
Revised 7 May 2000