Differential Inclusions, Control and Optimization 20 (2000) 159-169
doi: 10.7151/dmdico.1010

[BIBTex] [PDF] [PS]

EQUILIBRIUM OF MAXIMAL MONOTONE OPERATOR IN A GIVEN SET

Dariusz Zagrodny

Technical University of Łódź
ul. Żwirki 36, 90-924 Łódź, Poland
e-mail: zagrodny@uksw.edu.pl

Abstract

Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].

Keywords: subdifferentials, maximal monotonicity, equilibrium points, min-max.

1991 Mathematics Subject Classification: 49J52, 47H05.

References

[1] A. Drwalewska and L. Gajek, On Localizing Global Pareto Solutions in a Given Convex Set, Applicationes Mathematicae 26 (1999), 383-301.
[2] L. Gajek and D. Zagrodny, Countably Orderable Sets and Their Applications in Optimization, Optimization 26 (1992), 287-301.
[3] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, Heidelberg 1989.
[4] M. Przeworski and D. Zagrodny, Constrained Equilibrium Point of Maximal Monotone Operator via Variational Inequality, Journal of Applied Analysis 5 (1999), 147-152.
[5] M. Przeworski, Lokalizacja Punkt\.ow Wykresu Operatora Maksymalnie Monotonicznego, Praca doktorska, Instytut Matematyki Politechniki ódzkiej 1999.
[6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg 1998.
[7] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa and D. Reidel Publishing Company, Dordrecht, Boston 1984.
[8] S. Simons, Subtangents with Controlled Slope, Nonlinear Analysis, Theory, Methods and Applications 22 (11) (1994), 1373-1389.
[9] S. Simons, Swimming Below Icebergs, Set-Valued Analysis 2 (1994), 327-337.
[10] S. Simons, Minimax and Monotonicity, Springer-Verlag, Berlin, Heidelberg 1998.
[11] E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIB Nonlinear Monotone Operators, Springer-Verlag, Berlin, Heidelberg 1989.
[12] D. Zagrodny, The Maximal Monotonicity of the Subdifferentials of Convex Functions: Simons' Problem, Set-Valued Analysis 4 (1996), 301-314.

Received 6 November 1999
Revised 5 April 2000