Discussiones Mathematicae Graph Theory  17(2) (1997) 243-251
doi: 10.7151/dmgt.1051

[BIBTex] [PDF]

LOCALIZATION OF JUMPS OF THE POINT-DISTINGUISHING CHROMATIC INDEX OF Kn,n

Mirko Horňák and Roman Soták

Department of Geometry and Algebra, P. J.  Šafárik University
Jesenná 5, 041 54 Ko sice, Slovakia

e-mail: hornak@turing.upjs.sk
          sotak@duro.upjs.sk

Abstract

The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of Kn,n is found.

Keywords: Point-distinguishing chromatic index, colour set, complete equibipartite graph.

1991 Mathematics Subject Classification: 05C15.

References

[1] K. Al-Wahabi, R. Bari, F. Harary and D. Ullman, The edge-distinguishing chromatic number of paths and cycles, Annals of Discrete Math. 41 (1989) 17-22, doi: 10.1016/S0167-5060(08)70446-1.
[2] D.G. Beane, N.L. Biggs and B.J. Wilson, The growth rate of the harmonious chromatic number, J. Graph Theory 13 (1989) 291-298, doi: 10.1002/jgt.3190130304.
[3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory (to appear).
[4] J. Cerný, M. Hor nák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.
[5] O. Favaron and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. (to appear).
[6] ">[6] O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241-252.
[7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary and J.S. Maybee, eds., Graphs and Applications (Wiley-Interscience, New York 1985) 147-162.
[8] J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Discrete Meth. 4 (1983) 306-311, doi: 10.1137/0604032.
[9] M. Hor nák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.
[10] -, The fifth jump of the point-distinguishing chromatic index of Kn,n, Ars Combin. 42 (1996) 233-242.
[11] -, Asymptotic behaviour of the observability of Qn, Discrete Math. (to appear).
[12] Sin-Min Lee and J. Mitchem, An upper bound for the harmonious chromatic number of a graph, J. Graph Theory 12 (1987) 565-567.
[13] Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Congr. Numer. 63 (1988) 213-228.
[14] N. Zagaglia Salvi, On the the point-distinguishing chromatic index of Kn,n, Ars Combin. 25 (B) (1988) 93-104.
[15] -, On the value of the point-distinguishing chromatic index of Kn,n, Ars Combin. 29 (B) (1990) 235-244.